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CONCERNING COMPACT CONTINUA IN CERTAIN 
SPACES OF R. L. MOORE 

BY J. H. ROBERTS 

While writing his colloquium book, Foundations of Point Set 
Theory,f R. L. Moore noted that a large body of theorems con
cerning internal properties of compact continua could be estab
lished on the basis of a set of axioms (Axioms 1-5, Foundations) 
insufficient to make the space 5 itself a subset of a plane. He sug
gested that possibly every compact continuum M in S was 
homeomorphic with a compact continuum in the plane. In the 
present paper it is shown that, with possibly one exception, 
this is the case. If S is itself compact then it is homeomorphic 
with a subset of a sphere (possibly the sphere itself). But any 
compact continuum which is a proper subset of S is homeomor
phic with a compact continuum in the plane. 

THEOREM 1. If S is a space in which Moore's Axioms 1-5 hold 
true and M is a closed and compact subset of S> then M is homeo
morphic with a subset of a sphere. If furthermore M is a proper 
subset of S, then it is homeomorphic with a subset of a plane. 

Let E and / denote, respectively, a simple domainf and its 
boundary. I t will be shown that if L is any circle in a plane and 
Ti is any topological transformation of J into L, then there 
exists a topological transformation T2 of E- M+J into a subset 
of L plus its interior, such that for each point P of J, T^P) 
= Ti(P). From this result it readily follows that any closed 
and compact subset of S is homeomorphic with a subset of a 
sphere. If M is a closed and compact proper subset of 5, and 
P is a point of S — M, then the closed and compact point set 
M+P is homeomorphic with a subset of a sphere, and thus M 
is homeomorphic with a proper subset of a sphere, and hence 
homeomorphic with a subset of a plane. Henceforth it will be 
assumed that M is a closed and compact subset of E + J, where 
E is a simple domain and J is its boundary. 

t Colloquium Publications of this Society, vol. XIII. Henceforth this book 
will be referred to as Foundations. 

X A simple domain is a domain bounded by a simple closed curve. 


