CONVERGENCE FACTORS FOR DOUBLE SERIES*

BY W. H. DURFEE

1. Introduction. By a theorem due originally to Frobenius† if the power series $y(z) = \sum_{i=0}^{\infty} a_i z^i$ has the unit circle as circle of convergence, and if $\sum_{i=0}^{\infty} a_i$ is summable by Cesàro's first mean with the value *s*, then $\lim y(z) = s$ as $z \to +1$ along any path lying between two fixed chords intersecting at z = +1. This theorem has been considerably extended, in the field of double series notably by Bromwich and Hardy,‡ and by C. N. Moore.§ The former proved that if $f(x, y) = \sum_{i,j=0}^{\infty} a_{ij} x^i y^j$, and if $|S_{ij}^{(k)}|$, the *k*th Hölder mean of $\sum a_{ij}$, is bounded for all values of *i* and *j*, and $\lim_{i,j\to\infty} S_{ij}^{(k)} = s$, then also $\lim_{x,y\to 1} f(x, y) = s$. More particular reference will presently be made to Moore's paper, his theorems being the starting point for the present article. Robison,||also, has given necessary and sufficient conditions for the regularity of a transformation applied to a double sequence.

The writer, in a paper on series of the form $y(z) = \sum_{i=0}^{\infty} a_i z^{f(i)}$, gave sufficient conditions on f(i) so that $\lim_{z\to 1} y(z) = s.$ The present paper deals with double series of the type

$$J(z, w) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} z^{f(i)} w^{g(j)},$$

where z, w are complex variables, and f(i), g(j) are logarithmicoexponential functions,**called for brevity L-functions. Sufficient conditions on f(i), g(j) will be given so that if $\sum a_{ij}$ is summable (C, r-1) with the value s, then J(z, w) will be convergent for |z| < 1, |w| < 1, and $\lim_{(z,w) \to (1,1)} J(z, w) = s$.

^{*} Presented to the Society, April 8, 1932.

[†] Journal für Mathematik, vol. 89 (1880), p. 262.

[‡] Proceedings of the London Mathematical Society, (2), vol. 2 (1904), p. 161.

[§] Transactions of this Society, vol. 29 (1927), p. 227.

^{||} Transactions of this Society, vol. 28 (1926), p. 50.

[¶] American Journal of Mathematics, vol. 53 (1931), p. 817.

^{**} Hardy, Orders of Infinity.