NOTE ON CUBIC SURFACES IN THE GALOIS FIELDS OF ORDER $2^{n *}$
 BY A. D. CAMPBELL

Let us consider the cubic surface with the equation

$$
\begin{aligned}
f(x, y, z, w) \equiv & a_{0} w^{3}+\left(b_{0} x+b_{1} y+b_{2} z\right) w^{2}+\left(c_{0} x^{2}+c_{1} y^{2}\right. \\
& \left.+c_{2} z^{2}+c_{3} y z+c_{4} z x+c_{5} x y\right) w+\left(d_{0} x^{3}\right. \\
& +d_{1} y^{3}+d_{2} z^{3}+d_{3} y^{2} z+d_{4} y z^{2}+d_{5} x^{2} y \\
& \left.+d_{6} x y^{2}+d_{7} x^{2} z+d_{8} x z^{2}+d_{9} x y z\right)=0,
\end{aligned}
$$

whose coefficients and variables represent numbers in a Galois field of order 2^{n}. The first polar (or polar quadric) of any point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right)$ with respect to (1) is

$$
\begin{aligned}
& \left(d_{0} x^{\prime}+d_{5} y^{\prime}+d_{7} z^{\prime}+c_{0} w w^{\prime}\right) x^{2}+\left(d_{6} x^{\prime}+d_{1} y^{\prime}+d_{3} z^{\prime}\right. \\
& \left.\quad+c_{1} w^{\prime}\right) y^{2}+\left(d_{8} x^{\prime}+d_{4} y^{\prime}+d_{2} z^{\prime}+c_{2} w^{\prime}\right) z^{2}+\left(b_{0} x^{\prime}+b_{1} y^{\prime}\right. \\
& \left.\quad+b_{2} z^{\prime}+a_{0} w w^{\prime}\right) w^{2}+\left(d_{9} z^{\prime}+c_{5} w^{\prime}\right) x y+\left(d_{9} y^{\prime}+c_{4} w^{\prime}\right) x z \\
& \quad+\left(c_{5} y^{\prime}+c_{4} z^{\prime}\right) x w+\left(d_{9} x^{\prime}+c_{3} w^{\prime}\right) y z+\left(c_{5} x^{\prime}+c_{3} z^{\prime}\right) y w \\
& \quad+\left(c_{4} x^{\prime}+c_{3} y^{\prime}\right) z w=0 .
\end{aligned}
$$

The second polar of P^{\prime} with respect to (1) can be obtained from (2) by interchanging x^{\prime} and x, y^{\prime} and y, z^{\prime} and z, w^{\prime} and w. The polar quadric of $(0,0,0,1)$ is

$$
\begin{equation*}
c_{0} x^{2}+c_{1} y^{2}+c_{2} z^{2}+a_{0} w^{2}+c_{3} y z+c_{4} z x+c_{5} x y=0 . \tag{3}
\end{equation*}
$$

The second polar of $(0,0,0,1)$ is

$$
\begin{equation*}
b_{0} x+b_{1} y+b_{2} z+a_{0} w=0 \tag{4}
\end{equation*}
$$

The Hessian of (1) is

$$
\begin{align*}
\left(d_{9} z+c_{5} w\right)\left(c_{4} x+c_{3} y\right)+\left(d_{9} y\right. & \left.+c_{4} w\right)\left(c_{5} x+c_{3} z\right) \tag{5}\\
& +\left(c_{5} y+c_{4} z\right)\left(d_{9} x+c_{3} w\right) \equiv 0 .
\end{align*}
$$

We note in fact, that the first polar of $(0,0,0,1)$ with respect to (3) vanishes identically; whereas the first polars of $(1,0,0,0)$, $(0,1,0,0)$, and ($0,0,1,0$), respectively, are

[^0]
[^0]: * Presented to the Society, October 29, 1932.

