COMPACTNESS

$$\begin{split} \int_{2\delta}^{a} \left| \log \left(1 - \frac{\delta}{\tau} \right) \right| \frac{d\tau}{\tau} &= - \int_{1/2}^{\delta/a} \left| \log \left(1 - \tau \right) \right| \frac{d\tau}{\tau} \\ &= \int_{\delta/a}^{1/2} \left| \log \left(1 - \tau \right) \right| \frac{d\tau}{\tau} = o(1) \,. \end{split}$$

Hence $I_2 = o(1)$. Finally it is obvious that $I_3 = o(1)$ as $\delta \rightarrow 0$. On combining these facts, we obtain the desired result:

$$\int_{\delta}^{a} \left| \phi(t+\delta) - \phi(t) \right| \frac{dt}{t} = o(1)$$

BROWN UNIVERSITY

A NOTE ON COMPACTNESS*

BY E. H. HANSON

The purpose of this note is to deduce the conditions for compactness[†] of a set of measurable functions from the general criterion for compactness in complete metric spaces.[‡] This is the procedure that suggests itself immediately and it succeds without any difficulty. The general criterion referred to asserts that a set S of elements of a complete metric space is compact if and only if, for every positive ϵ , S is inclosable in a finite number of spheres§ of radius ϵ ; and the validity of this the reader may easily verify for himself. Fréchet|| has obtained the result for

1933.]

^{*} Presented to the Society, February 25, 1933. I wish to express my gratitude to Professor Henry Blumberg for suggesting the idea of this note and for helpful criticism during its preparation.

 $[\]dagger$ A set S of elements of a space is *compact* if every infinite subset of S has at least one limit point in the space.

[‡] A space *M* is said to be *metric* if there exists a positive or zero function $d(e_1, e_2)$ of pairs of elements of *M* satisfying the conditions: (1) $d(e_1, e_2) = d(e_2, e_1)$, (2) $d(e_1, e_2) = 0$ is equivalent to $e_1 = e_2$; (3) $d(e_1, e_3) \le d(e_1, e_2) + d(e_2, e_3)$. A metric space is *complete* if $\lim_{m,n\to\infty} d(e_m, e_n) = 0$ implies the existence of an element *e* such that $\lim_{n\to\infty} d(e_n, e) = 0$.

[§] A sphere with center c and radius r is by definition the set of elements e of M such that d(e, c) < r.

 $[\]parallel$ Sur les ensembles compacts de fonctions mesurables, Fundamenta Mathematicae, vol. 9, p. 25.