ON THE NUMBER OF (q+1)-SECANT S_{q-1} 'S OF A CERTAIN V_k^n IN AN $S_{qk+q+k-1}$

BY B. C. WONG

In this note we are concerned only with those k-dimensional non-developable varieties which are rational loci each of ∞^1 (k-1)-spaces. By a rational locus of ∞^1 (k-1)-spaces we mean one whose (k-1)-spaces can be put in a one-to-one correspondence with the points of a straight line. Let such a locus or variety, V_k^n , of order n be given in an S_r . Now in S_r there are $\infty^{q(r-q+1)}$ (q-1)-spaces. For a (q-1)-space to meet V_k^n q+1 times is equivalent to (q+1)(r-q-k+1) simple conditions. In order that the number, N, of (q-1)-spaces (q+1)-secant to V_k^n , that is, having q+1 points of simple incidence with V_k^n , be finite, we must have (q+1)(r-q-k+1)=q(r-q+1) or r=qk+q+k-1. It is our purpose to determine this number N of (q+1)-secant S_{q-1} 's of V_k^n in $S_{qk+q+k-1}$.

For this purpose we find it convenient to consider the V_k^n in question as the projection of a $V_k'^n$ in a higher space $S_{r'}$. This $V_k'^n$ may always be regarded as the locus of ∞^1 (k-1)-spaces joining corresponding points of k rational, projectively related curves C^{n_1} , C^{n_2} , \cdots , C^{n_k} of respective orders n_1 , n_2 , \cdots , n_k , where $n_1+n_2+\cdots+n_k=n$. The $S_{r'}$ containing $V_k'^n$ must be such that $r' \leq n+k-1$. If r'=n+k-1, $V_k'^n$ is said to be normal in S_{n+k-1} . It is only necessary to consider this normal $V_k'^n$.

Let the k curves be given parametrically by

$$C^{n_1} \quad x_0 \colon x_1 \colon \cdots \colon x_{n_1} = t^{n_1} \colon t^{n_1-1} \colon \cdots \colon 1,$$

$$x_{n_1+1} = x_{n_1+2} = \cdots = x_{n+k-1} = 0;$$

$$C^{n_2} \quad x_0 = x_1 = \cdots = x_{n_1} = 0,$$

$$x_{n_1+1} \colon x_{n_1+2} \colon \cdots \colon x_{n_1+n_2+1} = t^{n_2} \colon t^{n_2-1} \colon \cdots \colon 1,$$

$$x_{n_1+n_2+2} = x_{n_1+n_2+3} = \cdots = x_{n+k-1} = 0;$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$C^{n_k} \quad x_0 = x_1 = \cdots = x_{n-n_k+k-2} = 0,$$

$$x_{n-n_k+k-1} \colon x_{n-n_k+k} \colon \cdots \colon x_{n+k-1} = t^{n_k} \colon t^{n_k-1} \colon \cdots \colon 1.$$