ON THE REPRESENTATION OF NUMBERS MODULO m^{*}

BY E. D. RAINVILLE

Dirichlet and Kronecker \dagger extended the notion of primitive root to the case of any composite modulus. The classical Kron-ecker-Dirichlet theorem may be stated as follows. Let $m=2^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} \cdots p_{v}{ }^{\alpha_{v}}$, where the p^{\prime} s are distinct odd primes. Determine g_{k}, a primitive root of $p_{k}{ }^{\alpha_{k}}$, for $k=1,2, \cdots, v$. Form

$$
\lambda_{k}=g_{k}+p_{k}{ }_{k}^{\alpha_{k} \beta_{k}} \equiv 1 \quad \bmod m / p_{k}{ }^{\alpha_{k}},
$$

and, if $\alpha_{0}>1$,

$$
\begin{aligned}
\lambda & =-1+2^{\alpha_{0}} \beta \equiv 1 \quad \bmod m / 2^{\alpha_{0}} \\
\lambda_{0} & =5+2^{\alpha_{0}} \beta_{0} \equiv 1 \quad \bmod m / 2^{\alpha_{0}}
\end{aligned}
$$

Then, for (n, m) $=1, n$ is uniquely represented modulo m by

$$
n \equiv \lambda^{i} \lambda_{0} i_{0} \prod_{k=1}^{v} \lambda_{k}{ }^{i_{k}} \bmod m
$$

where the exponents are restricted by the inequalities

$$
0 \leqq i \leqq 1, \quad 0 \leqq i_{0} \leqq \phi\left(2^{\alpha_{0}-1}\right)-1, \quad 0 \leqq i_{k} \leqq \phi\left(p_{k}{ }^{\alpha k}\right)-1
$$

If $\alpha_{0} \leqq 1, \lambda$ and λ_{0} are not to be formed, hence $i=i_{0}=0$ automatically.

In the course of another investigation a further extension to the case of general n (dropping the restriction $(n, m)=1$) became necessary. This is the object of the present note.

Theorem. Let $m=2{ }^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} \cdots p_{v}{ }^{\alpha_{v}}$ (p 's distinct odd primes). Determine g_{k}, a primitive root \ddagger of $p_{k}{ }^{2}, k=1,2, \cdots, v$. Form

$$
\lambda_{k}=g_{k}+p_{k}{ }_{k}^{\alpha_{k}} \beta_{k} \equiv 1 \quad \bmod m / p_{k}^{\alpha_{k}}
$$

and, if $\alpha_{0}>1$,

[^0]
[^0]: * Presented to the Society, March 18, 1933.
 \dagger Dickson, History of the Theory of Numbers, vol. 1, pp. 185, 192.
 \ddagger The root g_{k} is then also a primitive root of $p_{k}^{n}, n>0$ (Dirichlet-Dedekind, Zahlentheorie, 4th ed., 1894, p. 334).

