ON THE REPRESENTATION OF NUMBERS MODULO *m**

BY E. D. RAINVILLE

Dirichlet and Kronecker[†] extended the notion of primitive root to the case of any composite modulus. The classical Kronecker-Dirichlet theorem may be stated as follows. Let $m = 2^{\alpha_0} p_1^{\alpha_1} \cdots p_v^{\alpha_v}$, where the p's are distinct odd primes. Determine g_k , a primitive root of $p_k^{\alpha_k}$, for $k = 1, 2, \dots, v$. Form

$$\lambda_k = g_k + p_k^{\alpha_k} \beta_k \equiv 1 \mod m/p_k^{\alpha_k},$$

and, if $\alpha_0 > 1$,

$$\begin{split} \lambda &= -1 + 2^{\alpha_0} \beta \equiv 1 \mod m/2^{\alpha_0}, \\ \lambda_0 &= 5 + 2^{\alpha_0} \beta_0 \equiv 1 \mod m/2^{\alpha_0}. \end{split}$$

Then, for (n, m) = 1, n is uniquely represented modulo m by

$$n \equiv \lambda^i \lambda_0{}^{i_0} \prod_{k=1}^{i} \lambda_k{}^{i_k} \mod m,$$

where the exponents are restricted by the inequalities

$$0 \leq i \leq 1, \qquad 0 \leq i_0 \leq \phi(2^{\alpha_0-1}) - 1, \qquad 0 \leq i_k \leq \phi(p_k^{\alpha_k}) - 1.$$

If $\alpha_0 \leq 1$, λ and λ_0 are not to be formed, hence $i = i_0 = 0$ auto-

matically.

In the course of another investigation a further extension to the case of general n (dropping the restriction (n, m) = 1) became necessary. This is the object of the present note.

THEOREM. Let $m = 2^{\alpha_0} p_1^{\alpha_1} \cdots p_v^{\alpha_v}$ (p's distinct odd primes). Determine g_k , a primitive root of p_k^2 , $k = 1, 2, \cdots, v$. Form

$$\lambda_k = g_k + p_k^{\alpha_k} \beta_k \equiv 1 \mod m/p_k^{\alpha_k}$$

and, if $\alpha_0 > 1$,

^{*} Presented to the Society, March 18, 1933.

[†] Dickson, History of the Theory of Numbers, vol. 1, pp. 185, 192.

[‡] The root g_k is then also a primitive root of p_k^n , n > 0 (Dirichlet-Dedekind, *Zahlentheorie*, 4th ed., 1894, p. 334).