NOTE ON A SPECIAL CYCLIC SYSTEM*

BY MALCOLM FOSTER

1. Introduction. This note is concerned with a special cyclic system. \dagger Let S be a surface referred to any orthogonal system, and T the trihedral whose x-axis is tangent to the curve $v=$ const. The equations

$$
\begin{equation*}
x=R(1+\cos \theta), \quad y=0, \quad z=R \sin \theta, \tag{1}
\end{equation*}
$$

define a two-parameter family of circles C normal to S; and the necessary and sufficient conditions that C shall constitute a cyclic system are
(2) $\xi \frac{\partial R}{\partial v}+R \eta_{1} r=0, \quad R\left(p r_{1}-p_{1} r\right)-q_{1}\left(\xi+\frac{\partial R}{\partial u}\right)+q \frac{\partial R}{\partial v}=0$.

It is readily seen that the first of equations (2) may be written \ddagger

$$
\xi \frac{\partial R}{\partial v}-R \frac{\partial \xi}{\partial z}=0
$$

hence

$$
\begin{equation*}
R=U \xi \tag{3}
\end{equation*}
$$

where U is a function of u alone. Using (3) we may write the second equation of (2) in the form

$$
\begin{equation*}
U \xi\left(p r_{1}-p_{1} r\right)-q_{1}\left(\xi+\xi U^{\prime}+U \frac{\partial \xi}{\partial u}\right)-q U \eta_{1} r=0 \tag{4}
\end{equation*}
$$

We shall therefore replace equations (2) by (3) and (4).
2. The Inversion of C. If we invert the circles C relative to the circles $x^{2}+z^{2}=K^{2}, y=0$, where K is any constant, we get the following system of lines L,

$$
\begin{equation*}
x=\frac{K^{2}}{2 R}, \quad y=0 \tag{5}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, March 25, 1932.
 \dagger See Eisenhart, Differential Geometry of Curves and Surfaces, Ex. 11, p. 444.
 \ddagger Eisenhart, p. 170.

