NOTE ON SETS OF POSITIVE MEASURE*

BY HENRY BLUMBERG

A recurring question concerning (*L*-measurable) sets of positive measure is what properties they have in common with the linear interval. The following theorem is concerned with such a property, stated for sets of *n*-dimensional positive measure lying in euclidean n space.

THEOREM. Let A_1, A_2, \dots, A_p be p sets of positive measure lying in euclidean n space. Then there exist p n-dimensional spheres S_1, S_2, \dots, S_p such that for every set of p points s_r , $(\nu = 1, 2, \dots, p)$, belonging respectively to these spheres, there exists a set of p points a_r , $(\nu = 1, 2, \dots, p)$, lying respectively in A_1 , A_2, \dots, A_p , such that the sets $\{a_r\}$ and $\{s_r\}$ are congruent. Moreover, there exists a set of p congruent spheres S_r satisfying the condition just stated and a positive number δ such that for every selected $\{s_r\}$, with s_r belonging to S_r , the associated $\{a_r\}$ may be so chosen that a_1 ranges over a set of measure $> \delta$.

PROOF. Since A_{ν} is of positive measure, there is a sphere S'_{ν} in which the relative measure of A_{ν} is greater than $1 - \epsilon$, where ϵ is a given positive number less than 1; that is, $m(A_{\nu}, S'_{\nu})/m(S'_{\nu}) > 1-\epsilon$, m(A) standing for the measure of A. We may suppose, and we do so for simplicity of statement, that all the S'_{ν} , $(\nu = 1, \dots, p)$, are equal, and we denote their common measure by μ , and their respective centers by c_{ν} . Let ρ be a positive number such that if a sphere of measure μ is translated a distance $<\rho$, the part belonging to the sphere in both positions is of measure $>(1-\epsilon)\mu$. Denote by v_{ν} , $(\nu = 1, \dots, p-1)$, the vector represented by the segment $c_{\nu}c_{\nu+1}$; and let w_{ν} , $(\nu = 1, \dots, p)$, be a given set of *n*-dimensional vectors, each of length $<\rho$. If a set A(or point a) is given a displacement represented by the vector $\pm v$, we denote the set (or point) in its new position by $A \pm (v)$ (or $a \pm (v)$). Writing $A_{\nu}S'_{\nu} = T^{(\nu)}$ and $T' = T'_{1}$, we set

$$T_1' + (v_1 - w_1 + w_2) = T_2'; T_2' T'' = T_1'';$$

^{*} Presented to the Society, April 14, 1923.