A. $(e''+e) \neq e$, by 8(ii). B. $(e''+e) \neq (a'+a)$, by 6(i). C. $(e''+e) \neq [b'+(a+b)]$. For otherwise, by 3, 9(i), 2 and 4, either (i) e'=b and e=(a+b), or else (ii) e=b' and e''=(a+b). But (i) is impossible since $(a+b)'\neq b$ by 5(ii), and (ii) is impossible since $e\neq b'$ by 8(i). D. $(e''+e)\neq \{(b'+c)'+[(a+b)'+(a+c)]\}$. Indeed otherwise in view of 3, 11, 2 and 4, either (i) e'=(b'+c) and e=[(a+b)'+(a+c)] which contradicts 8(ii), or else (ii) e''=[(a+b)'+(a+c)] and e=(b'+c)' which contradicts 8(i) and also 11.

BROWN UNIVERSITY

CONCURRENCE AND UNCOUNTABILITY*

BY N. E. RUTT

1. Introduction. The point set of chief interest in this paper, a plane bounded continuum Z, is the sum of a continuum X and a class of connected sets $[X_{\alpha}]$, each element X_{α} of which has at least one limit point in X and is a closed subset of $c_u(X+X_b)$, where X_b is any element of $[X_{\alpha}]$ different from X_a and where $c_u(X+X_b)$ is the unbounded component of the plane complement of the set $X + X_b$. Upon a basis of separation properties, order[†] may be assigned to the elements of $[X_{\alpha}]$ agreeing in its details with that of some subset of a simple closed curve. We shall use some definite element X_r of $[X_{\alpha}]$ as reference element, selecting as X_r one of $[X_{\alpha}]$ containing a point arcwise accessible from $c_u(Z)$. A countable subcollection $[X_i^h]$ of $[X_\alpha]$ excluding X_r is called a *series* if for each j, $(j=2, 3, 4, \cdots)$, the elements X_i and X_r separate X_{i-1} and X_{i+1} . Two different series $[X_i^h]$ and $[X_i^k]$ are said to be opposite in sense if there exist different subscripts m and n such that X_m^h and X_m^k separate both X_n^h and X_n^k from X_r ; otherwise they are said to have the same sense. They are said to be concurrent if they have the same sense and if there exists no element of $[X_{\alpha}]$ which together

1933.]

^{*} Presented to the Society, February 25, 1933.

[†] R. L. Moore, Concerning the sum of a countable number of continua in the plane, Fundamenta Mathematicae, vol. 6, pp. 189–202; J. H. Roberts, Concerning collections of continua not all bounded, American Journal of Mathematics, vol. 52 (1930), pp. 551–562; N. E. Rutt, On certain types of plane continua, Transactions of this Society, vol. 33, No. 3, pp. 806–816.