SOME INVOLUTORIAL LINE TRANSFORMATIONS*

BY J. M. CLARKSON

1. Introduction. In a paper published in this Bulletin, \dagger the author discussed three involutorial line transformations obtained by considering the transversals of one line each of four plane pencils; one line each of two plane pencils and two generators of a quadratic regulus; and two generators each of two quadratic reguli. In this paper we shall discuss those involutorial transformations between the two transversals of three generators of a cubic regulus and one line of a plane pencil; and the transversals of four generators of a quartic regulus. We shall also discuss an involutorial line transformation defined by two plane harmonic homologies. The methods used are algebraic and the results obtained are interpreted as point transformations on a certain quadratic hypersurface in S_{5}.
2. Cubic Regulus and Plane Pencil. Consider the ruled surface

$$
F_{3} \equiv z_{1}{ }^{2} z_{3}-z_{2}^{2} z_{4}=0,
$$

and the pencil of lines in the plane

$$
\alpha \equiv z_{1}+z_{2}-z_{3}+z_{4}=0
$$

with vertex $A \equiv(1,0,1,0)$. The Plücker coordinates of a generator of F_{3} and those of a line of the pencil (A, α) are ($0,-k^{2}, 1,0$, k, k^{3}) and ($1,0,-m, m, 1+m, 1$), respectively, where the k and m are parameters. A general line (y) with coordinates y_{i}, ($i=1, \cdots, 6$), meets three generators of F_{3} and one line of (A, α). These four lines, in general mutually skew, have a second transversal (x) whose co-ordinates are found to be

$$
\begin{equation*}
x_{i}=\phi_{i}(y), \quad(i=1, \cdots, 6) \tag{1}
\end{equation*}
$$

where the $\phi_{i}(y)$ are cubic functions in y_{j}. Thus the transformation is of third order.

The invariant locus of the transformation is a quadratic complex whose equation is found in the manner described in the pre-

* Presented to the Society, December 29, 1932.
\dagger Vol. 38 (1932), pp. 533-540.

