Since $a \leqq 374930473917097$, we have in each case $k \leqq 39111579$. Thus the problem of representing N as the difference of squares was split into 8 parts. The first two parts were covered by the machine without any result. On the third run, however, the machine stopped almost at once at $x=58088$. This gives

$$
a=556846584735, \quad b=556644555032
$$

Hence we have the factorization

$$
2^{79}-1=2687 \cdot 202029703 \cdot 1113491139767
$$

It is not difficult to show that the factors are primes. This is the 13 th composite Mersenne number to be completely factored. The author's recent report* on Mersenne numbers should be changed accordingly.

Pasadena, California

MATRICES WHOSE s TH COMPOUNDS ARE EQUAL

BY JOHN WILLIAMSON

If A is a matrix of m rows and n columns and s is any positive integer less than or equal to the smaller of n and m, from A can be formed a new matrix A_{s} of ${ }_{m} C_{s}$ rows and ${ }_{n} C_{s}$ columns, the elements in the t th row of A_{s} being the ${ }_{n} C_{s}$ determinants of order s that can be formed from the t_{1} th, \cdots, t_{s} th rows of A, and the elements in the t th column being the ${ }_{m} C_{s}$ determinants of order s that can be formed from the t_{1} th, \cdots, t_{s} th columns of A. The matrix A_{s}, so defined, is called the s th compound matrix of A. In the following note we discuss the necessary and sufficient conditions under which the s th compounds of two matrices are equal. We shall require the following lemmas.

Lemma I. The rank of the sth compound of a matrix A, whose rank is r, is ${ }_{r} C_{s}$ if $r \geqq s$ and is zero if $s>r . \dagger$

[^0]
[^0]: * This Bulletin, vol. 38 (1932), p. 384. Dr. N. G. W. H. Beeger has kindly called my attention to the fact that $2^{233}-1$ has two known prime factors and should be classified accordingly.
 \dagger Cullis, Matrices and Determinoids, vol. 1, p. 289.

