One is thus led to the conclusion that

$$
\lim _{a \rightarrow 0} 2 \cdot 2^{1 / 2} \int_{0}^{a}(F(a)-F(x))^{-1 / 2} d x=2 \pi b^{-1 / 2}
$$

Hence we have the following theorem.
Theorem 3. The period of vibration T under restoring force $f(x)$, conditioned by hypotheses (A), (B), and (C), approaches the limit $2 \pi b^{-1 / 2}$ as the amplitude approaches zero.

Schenectady, N. Y.

A NOTE ON FERMAT'S LAST THEOREM

D. H. LEHMER*

In $1925 \mathrm{H} . \mathrm{S}$. Vandiver \dagger proved the following theorem.
Theorem 1. If

$$
\begin{equation*}
x^{p}+y^{p}+z^{p}=0 \tag{1}
\end{equation*}
$$

is satisfied by integers x, y, z, prime to the odd prime p, then the first factor of the class number of the field generated by $e^{2 \pi i / p}$ is divisible by p^{8}.

In the seventh of a series of articles on Fermat's last theorem, T. Morishima \ddagger has given the following improvement upon Theorem 1.

Theorem 2. In Theorem 1 we may replace p^{8} by p^{12} provided p does not divide 75571-20579903.

It is the purpose of this note to show that the proviso of Theorem 2 is unnecessary by showing that (1) is not satisfied by the prime factors of $75571 \cdot 20579903$. This is done by applying Wieferich's $\|$ criterion.

Theorem 3. If (1) is satisfied by integers x, y, z, prime to p, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

[^0]
[^0]: * National Research Fellow.
 \dagger Annals of Mathematics, (2), vol. 26, p. 232.
 \ddagger Proceedings of the Imperial Academy of Japan, vol. 8 (1932), pp. 63-66.
 || Journal für Mathematik, vol. 136 (1909), p. 203.

