ON ALGEBRAIC EQUATIONS HAVING ONLY REAL ROOTS*

BY W. E. ROTH

Given the algebraic equation

(1)
$$f_1(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n = 0, a_n \neq 0,$$

whose roots x_i , $i = 1, 2, \dots, n$, are all real. Then there exist equations, $f_{\lambda}(x) = 0$, also of degree n, whose roots are the real numbers x_i^{λ} , $(i = 1, 2, \dots, n; \lambda = \pm 1, \pm 2, \dots)$. If

(2)
$$S_j = x_1^j + x_2^j + \cdots + x_n^j$$
, $(j = 0, \pm 1, \pm 2, \cdots)$,

then the determinants

$$\Delta_{k}^{(\lambda)} = \begin{vmatrix} S_{0} & S_{\lambda} & \cdots & S_{(k-1)\lambda} \\ S_{\lambda} & S_{2\lambda} & \cdots & S_{k\lambda} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{(k-1)\lambda} & S_{k\lambda} & \cdots & S_{(2k-2)\lambda} \end{vmatrix}, \qquad (k = 2, 3, \cdots, n),$$

are all positive according to Borchardt's theorem[†] provided the roots of $f_{\lambda}(x) = 0$ are distinct. On the other hand, if $f_1(x) = 0$ has exactly μ ($\mu \le n$) distinct roots, all real, then for odd values of λ , $f_{\lambda}(x) = 0$ will have exactly the same number of distinct roots; and for even values of λ , exactly $\mu - \nu$ distinct roots, where ν is the number of distinct pairs of numerically equal roots of $f_1(x) = 0$ which differ only in sign. Under these hypotheses, it is known that

$$\Delta_k^{(\lambda)} > 0, \qquad (k = 2, 3, \cdots, \mu),$$

= 0,
$$(k = \mu + 1, \mu + 2, \cdots, n),$$

if λ is an odd positive or negative integer, and that

$$\Delta_k^{(\lambda)} > 0, \qquad (k = 2, 3, \cdots, \mu - \nu),$$

= 0, (k = \mu - \nu + 1, \mu - \nu + 2, \dots \dots n),

....

^{*} Presented to the Society, November 28, 1931.

[†] Borchardt, Journal de Mathématiques, vol. 12 (1847), p. 58; Werke, Berlin, (1888), p. 24.