ON ALGEBRAIC EQUATIONS HAVING ONLY REAL ROOTS*

BY W. E. ROTH
Given the algebraic equation

$$
\begin{equation*}
f_{1}(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0, a_{n} \neq 0 \tag{1}
\end{equation*}
$$

whose roots $x_{i}, i=1,2, \cdots, n$, are all real. Then there exist equations, $f_{\lambda}(x)=0$, also of degree n, whose roots are the real numbers $x_{i}{ }^{\lambda},(i=1,2, \cdots, n ; \lambda= \pm 1, \pm 2, \cdots)$. If

$$
\begin{equation*}
S_{j}=x_{1}^{j}+x_{2}^{j}+\cdots+x_{n}^{j}, \quad(j=0, \pm 1, \pm 2, \cdots) \tag{2}
\end{equation*}
$$

then the determinants

$$
\Delta_{k}^{(\lambda)}=\left|\begin{array}{cccc}
S_{0} & S_{\lambda} \cdots S_{(k-1) \lambda} \\
S_{\lambda} & S_{2 \lambda} & \cdots & S_{k \lambda} \\
\cdot & \cdot & \cdot & \cdot \\
S_{(k-1) \lambda} & S_{k \lambda} & \cdots & S_{(2 k-2) \lambda}
\end{array}\right|, \quad(k=2,3, \cdots, n)
$$

are all positive according to Borchardt's theorem \dagger provided the roots of $f_{\lambda}(x)=0$ are distinct. On the other hand, if $f_{1}(x)=0$ has exactly $\mu(\mu \leqq n)$ distinct roots, all real, then for odd values of $\lambda, f_{\lambda}(x)=0$ will have exactly the same number of distinct roots; and for even values of λ, exactly $\mu-\nu$ distinct roots, where ν is the number of distinct pairs of numerically equal roots of $f_{1}(x)=0$ which differ only in sign. Under these hypotheses, it is known that

$$
\begin{array}{rr}
\Delta_{k}^{(\lambda)}>0, & (k=2,3, \cdots, \mu), \\
=0, & (k=\mu+1, \mu+2, \cdots, n),
\end{array}
$$

if λ is an odd positive or negative integer, and that

$$
\begin{array}{rr}
\Delta_{k}^{(\lambda)}>0, & \quad(k=2,3, \cdots, \mu-\nu) \\
& =0, \quad(k=\mu-\nu+1, \mu-\nu+2, \cdots, n)
\end{array}
$$

[^0]
[^0]: * Presented to the Society, November 28, 1931.
 \dagger Borchardt, Journal de Mathématiques, vol. 12 (1847), p. 58; Werke, Berlin, (1888), p. 24.

