QUADRATIC PARTITIONS: PAPER III

BY E. T. BELL

1. Simple Summation Formulas. This note is independent of partitions. It gives the general summation formulas of which a very special case might have been used to pass directly from $\S 3$ to $\S 4$ of the preceding note,* and which will be used in future. The final formulas considerably extend and generalize many in the literature of the Bernoullian and allied functions.

Let $f(x)$ be an entire function of x. Write $M \equiv[(n-1) / 2]$, $N \equiv[n / 2]$;
$f_{\beta}(n) \equiv \sum_{r=1}^{M} f(2 r-1+e(n)), \quad f_{\gamma}(n) \equiv \sum_{r=1}^{M}(-1)^{r} f(2 r-1+e(n))$,
$f_{\eta}(n) \equiv \sum_{r=1}^{N}(-1)^{r} f(2 r-e(n)), f_{\rho}(n) \equiv \sum_{r=1}^{N} f(2 r-e(n))$.
One of the pairs $(\beta, \eta),(\rho, \gamma)$ is sufficient, since

$$
\begin{aligned}
f_{\rho}(2 n-1)=f_{\beta}(2 n) & =\sum_{r=1}^{n-1} f(2 r), \\
f_{\rho}(2 n-2)=f_{\beta}(2 n-1) & =\sum_{r=1}^{n-1} f(2 r-1), \\
f_{\gamma}(2 n-1)=f_{\eta}(2 n-2) & =\sum_{r=1}^{n-1}(-1)^{r} f(2 r-1), \\
f_{\gamma}(2 n)=f_{\eta}(2 n-1) & =\sum_{r=1}^{n-1}(-1)^{r} f(2 r) .
\end{aligned}
$$

The like applies to the more general sums $f_{\xi p s}(n)$ in $\S 2$.
It is required to express $f_{\xi}(n)(\xi=\beta, \gamma, \eta, \rho)$ as explicit functions of n. Write

$$
\begin{aligned}
C_{\beta}(n) \equiv & 2 e(n) f(0)+2 f(n)+2 e(n)\left\{f\left(2 B^{\prime}\right)-f\left(-2 B^{\prime}\right)\right\} \\
& \cdot 2\{1-e(n)\}\left\{f\left(R^{\prime}\right)-f\left(-R^{\prime}\right)\right\}
\end{aligned}
$$

[^0]
[^0]: * This Bulletin, this issue (vol. 38, No. 8), pp. 551-554. The notation and definitions are given in I, ibid., vol. 37 (1931), pp. 870-875.

