and we have

$$
\sum G\left(x+z, \frac{y-x}{2}-z, x\right)=\epsilon_{1}(n) \sum_{r=1}^{T} G(t, 0,2 r-e(t))
$$

where $\epsilon_{1}(n)=1$ or 0 according as n is or is not a square >0, and $T=[t / 2]$.

Similarly, from $\S 4$, if $G_{1}(w, u, v)$ is $G(w, u, v)$ with the restriction of entirety in (u, v) we get

$$
\begin{aligned}
4 \sum G_{1}\left(x+z, \frac{y-x}{2}\right. & -z, x) \\
& =\epsilon_{1}(n)\left[G_{1}\left(t, 0, \rho^{\prime}(t)\right)-G_{1}\left(t, 0, \rho^{\prime}(-t)\right)\right]
\end{aligned}
$$

California Institute of Technology

THE TRANSFORMATION OF LINES OF SPACE BY MEANS OF TWO QUADRATIC REGULI*

BY A. R. WILLIAMS

If we take two quadratic reguli, a line l meets two generators of each. To l we make correspond the other transversal of the four generators. This involutory transformation of the lines of space is one of three, quite similar in principle. \dagger This case admits a very simple and effective algebraic treatment without the use of hyperspace.

We may take for the equations of two non-singular quadrics with real rulings $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=0$ and $a^{2} x_{1}^{2}+b^{2} x_{2}^{2}-c^{2} x_{3}^{2}$ $-d^{2} x_{4}^{2}=0$. On the former lies the regulus R_{1} defined by $x_{1}-x_{3}=m\left(x_{4}-x_{2}\right), x_{1}+x_{3}=1 /\left(m\left(x_{4}+x_{2}\right)\right)$. The Plücker coordinates of a line of this regulus are

$$
\begin{align*}
& p_{12}: p_{13}: p_{14}: p_{23}: p_{42}: p_{34} \tag{1}\\
& \quad=\left(m^{2}+1\right): 2 m:\left(m^{2}-1\right):\left(m^{2}-1\right): 2 m:-\left(m^{2}+1\right)
\end{align*}
$$

The other regulus R_{1}^{\prime} on the same quadric is given by the

[^0]
[^0]: * Presented to the Society, November 28, 1932.
 \dagger Discussed by Mr. J. M. Clarkson in the present issue of this Bulletin, vol. 38, pp. 533-540.

