$$
v_{n}(x)=\frac{\Gamma[(1-x) n+1]}{\Gamma(1+n)}
$$

the Mittag-Leffler convergence factor:

$$
v_{n}(x)=\frac{1}{\Gamma(1+n x)}
$$

and the Dirichlet series convergence factors:

$$
v_{n}(x)=e^{-\lambda(n) x},
$$

where $\lambda(n)$ must be a logarithmico-exponential function of n which tends to infinity with n but not as slowly as $\log n$ nor faster than n^{Δ}, where Δ is any constant however large.

Northwestern University

A THEOREM ON SYMMETRIC DETERMINANTS

BY W. V. PARKER

1. Introduction. In a recent paper* the writer proved the following theorem.

If $D=\left|a_{i j}\right|$ is a real symmetric determinant of order $n, n>5$, in which $a_{i i}=0,(i=1,2, \cdots, n)$, and M is any principal minor of D of order $n-1$, then if all fourth order principal minors of M are zero, D vanishes.

The purpose of the present note is to establish a second theorem of a similar nature which applies to complex as well as to real determinants. It will be shown also that when $a_{i j},(i \neq j)$, $(i, j=1,2, \cdots, n)$, is real and different from zero the conditions of this second theorem imply those of the above.
2. A Second Theorem. The theorem with which this note is concerned may be stated as follows.

Theorem. If $D=\left|a_{i j}\right|$ is a symmetric determinant of order n, $n>5$, in which $a_{i i}=0,(i=1,2, \cdots, n)$, and M is any principal minor of D or order $n-1$, then if all fourth order principal minors of D, which are not minors of M, are zero, D vanishes.

[^0]
[^0]: * This Bulletin, vol. 38 (1932), p. 259.

