SOME INVOLUTORIAL LINE TRANSFORMATIONS INTERPRETED AS POINTS OF V_{2} OF S_{5}^{*}

BY J. M. CLARKSON

1. Introduction. Consider the identity

I

$$
V_{2}(x) \equiv x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6} \equiv 0
$$

existing among the Plücker coordinates $x_{1}, x_{2}, \cdots, x_{6}$ of a line in S_{3} as the equation of a quadratic hypersurface in S_{5}. The existence of a (1,1) correspondence between the lines of S_{3} and the points of V_{2} is well known, as is also the representation of ruled surfaces in S_{3} by curves of the same orders and genera on $V_{2} . \dagger$

To a bundle of lines in S_{3} corresponds a plane of points on V_{2}, and to a plane field of lines corresponds a plane of points on V_{2}, called ω-planes and ρ-planes, respectively, throughout this paper. The two systems of planes are each ∞^{3}, and there are certain relations among them. Two planes of either system have always one and only one point in common, corresponding to the line common to the two representative bundles or plane fields; and a plane of the ω-system meets a plane of the ρ-system either in no point or in a line of points, corresponding to the flat pencil common to a bundle and a plane field of S_{3} when the vertex of the bundle lies on the plane of the field.

Line transformations of S_{3} are, therefore, point transformations on V_{2}. When the point transformations on V_{2} are nonlinear, their fundamental elements may be of dimension $0,1,2$, 3 , and their images, or the principal elements in the transformations, may be of dimension $1,2,3,4$. The transformations considered below are birational, but since the equation of V_{2} does not enter into the discussion of their birationality, we conclude that they are Cremona transformations for all of S_{5}.

> 2. Three Involutorial Transformations on V_{2}.
> Case 1. J. DeVries \ddagger discusses synthetically several involutions

[^0]
[^0]: * Presented to the Society, March 26, 1932.
 \dagger See, for example, W. L. Edge, Ruled Surfaces.
 \ddagger Proceedings, Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 22 (1920), pp. 478-481, 634-640.

