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cones projecting C and C’ from (0, 0, 1, 0) have contact of at
least order #+-1. Moreover, by changing this vertex to the point
(a, b, 1, 0) it is easily shown by a method similar to that used in
the general case that the cones projecting C and C’ from any
point in the osculating plane have contact of order z+1. In
other words, this special case arises when the principal plane
coincides with the osculating plane.
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1. Introduction. In Menger's studies in metrical geometry*
considerable attention is given to the rectification of the simple
arc and various definitions of the length of such an arc are dis-
cussed. With the definition of arc-length it is then possible to
give conditions for the “Konvexifizierbarkeit” of a compact
metric space (p. 96) and for the existence of a geodeticarcina
compact metric space (p. 492). Both theorems involve the as-
sumption of the existence of a rectifiable arc between each pair
of points. It is intended in this paper to show that these results
and some others are due to space properties which are of a more
general nature, at least formally, and which suggest possible
further studies.

2. Intrinsic Distance. If @ and b are two points of a metric
space Z, we let ab denote the distance between them. A finite
set of points {a;} such that ag=a, a,=>, and every aa;;1 <3
will be called a 8-chain from a to b, and aa1+a1a2+ - - -+ an_1b
will be called its length. If we set l;(a, b) equal to the lower
bound of the lengths of all §-chains from a to b, it is clear that
this number exists if there is any such chain, that it is greater
than or equal to @b, and that it increases monotonely as §—0.
The upper bound of J;(a, b) for all values of § is called the
inirinsic distancet from a to b and is denoted by I(a, b).

* Untersuchungen iiber allgemeine Metrik, Mathematische Annalen, vol.
100, pp. 75-163 and vol. 103, pp. 466-501. See also Annals of Mathematics,
vol. 32, pp. 739-746.

t This turns out to be essentially the same thing as Menger’s “geodetic dis-
tance,” loc. cit., p. 492. See §§4 and 7 below.



