cones projecting C and C^{\prime} from ($0,0,1,0$) have contact of at least order $n+1$. Moreover, by changing this vertex to the point ($a, b, 1,0$) it is easily shown by a method similar to that used in the general case that the cones projecting C and C^{\prime} from any point in the osculating plane have contact of order $n+1$. In other words, this special case arises when the principal plane coincides with the osculating plane.

The University of Kansas

ON RECTIFIABILITY IN METRIC SPACES

by w. A. WILSON

1. Introduction. In Menger's studies in metrical geometry* considerable attention is given to the rectification of the simple arc and various definitions of the length of such an arc are discussed. With the definition of arc-length it is then possible to give conditions for the "Konvexifizierbarkeit" of a compact metric space (p .96) and for the existence of a geodetic arc in a compact metric space (p. 492). Both theorems involve the assumption of the existence of a rectifiable arc between each pair of points. It is intended in this paper to show that these results and some others are due to space properties which are of a more general nature, at least formally, and which suggest possible further studies.
2. Intrinsic Distance. If a and b are two points of a metric space Z, we let $a b$ denote the distance between them. A finite set of points $\left\{a_{i}\right\}$ such that $a_{0}=a, a_{n}=b$, and every $a_{i} a_{i+1}<\delta$ will be called a δ-chain from a to b, and $a a_{1}+a_{1} a_{2}+\cdots+a_{n-1} b$ will be called its length. If we set $l_{\delta}(a, b)$ equal to the lower bound of the lengths of all δ-chains from a to b, it is clear that this number exists if there is any such chain, that it is greater than or equal to $a b$, and that it increases monotonely as $\delta \rightarrow 0$. The upper bound of $l_{\delta}(a, b)$ for all values of δ is called the intrinsic distance \dagger from a to b and is denoted by $l(a, b)$.
[^0]
[^0]: * Untersuchungen über allgemeine Metrik, Mathematische Annalen, vol. 100, pp. 75-163 and vol. 103, pp. 466-501. See also Annals of Mathematics, vol. 32, pp. 739-746.
 \dagger This turns out to be essentially the same thing as Menger's "geodetic distance," loc. cit., p. 492 . See $\S \S 4$ and 7 below.

