NOTE ON FUNCTIONAL FORMS QUADRATIC IN A

 FUNCTION AND ITS FIRST p DERIVATIVES*BY R. S. MARTIN

It has been shown that a normal functional form quadratic in a function and its derivative is reducible to an invariantive form quadratic in a function and a constant, and that the continuity of the coefficients of the first form implies the continuity of those of the second. \dagger The result is here generalized to a form quadratic in a function and p derivatives.

Let $y_{0}{ }^{\alpha}$ denote a continuous function of the real variable α defined on the range $a \leqq \alpha \leqq b$. Let $y_{1}{ }^{\alpha}, y_{2}{ }^{\alpha}, \cdots, y_{p}{ }^{\alpha}$ denote the corresponding derivatives defined and continuous on the same interval. The normal quadratic form is

$$
\begin{equation*}
Q=\sum_{i, j=0}^{p} A_{\alpha \beta}^{i j} y_{i}^{\alpha} y_{j}^{\beta}+A_{\alpha}^{i j y_{i}^{\alpha} y_{j}^{\alpha},} \tag{A}
\end{equation*}
$$

where $A_{\alpha}{ }^{i}{ }^{i}{ }^{i}$ and $A_{\alpha}{ }^{i j}$ are functions integrable in the Riemann sense, and where a Greek index repeated as a subscript and as a superscript is understood to denote integration with respect to that variable over the fundamental interval (a, b). The form Q is such that no generality is lost by assuming that $A_{\alpha}{ }^{i}{ }_{\beta}{ }^{j}=A_{\beta}{ }^{j}{ }_{\alpha}{ }^{i}$ and $A_{\alpha}{ }^{i j}=A_{\alpha}{ }^{j i}$. This assumption is made.

The convention of denoting integration by repeated Greek indices will be used in all that follows. In addition, when a Latin index (except p) occurs in a single term once as a superscript and once as a subscript, we shall understand summation with respect to that index over an integer range ($0, p-1$). Thus

$$
\begin{align*}
Q= & A_{\alpha \beta}^{i j} y_{i}^{\alpha} y_{j}^{\beta}+A_{\alpha \beta}^{p j} y_{p}^{\alpha} y_{j}^{\beta}+A_{\alpha \beta}^{i p y_{i}^{\alpha} y_{p}^{\beta}}+A_{\alpha \beta}^{p p} y_{p} y_{p}^{\beta} \\
& +A_{\alpha}^{i j} y_{i}^{\alpha} y_{j}^{\alpha}+A_{\alpha}^{p j} y_{p}^{\alpha} y_{j}^{\alpha}+A_{\alpha}^{i p} y_{i}^{\alpha} y_{p}^{\alpha}+A_{\alpha}^{p p}\left(y_{p}^{\alpha}\right)^{2} .
\end{align*}
$$

[^0]
[^0]: * Presented to the Society, December 30, 1930.
 \dagger A. D. Michal and L. S. Kennison, Quadratic functional forms on a composite range, Proceedings of the National Academy of Sciences, vol. 16 (1930), pp. 617-619.

