So, for the same value of h, namely, \bar{h}, there are two values of θ, namely, $\bar{\theta}$ and $\bar{\theta}^{\prime}$, which is absurd, since θ is single-valued.
(b) If the discontinuity is of the second kind, then there must be a sequence $\left\{h_{n}\right\}$, tending to \bar{h}, for which the corresponding sequence $\left\{\xi_{n}\right\}$ does not tend to any limit. Therefore two values k_{1} and k_{2} of h can always be found as near as we please to \bar{h} such that the corresponding values η_{1} and η_{2} of ξ differ from each other by a quantity greater than a suitably prescribed positive quantity δ. But, from (M), $f(h) / h$ and, consequently, $f^{\prime}(\xi)$ are continuous functions of h at \bar{h}. Therefore ξ must be multiple-valued at \bar{h}, which is absurd, since θ is singlevalued.

The University of Calcutta

A NUMERICAL FUNCTION APPLIED TO CYCLOTOMY

BY EMMA T. LEHMER

A function $\phi_{2}(n)$ giving the number of pairs of consecutive integers each less than n and prime to n, was considered first by Schemmel.* In applying this function to the enumeration of magic squares, D. N. Lehmer \dagger has shown that if one replaces consecutive pairs by pairs of integers having a fixed difference λ prime to $n=\prod_{i=1}^{t} p_{i}{ }^{\alpha_{i}}$, then the number of such pairs $(\bmod n)$ whose elements are both prime to n is also given by

$$
\phi_{2}(n)=\prod_{i=1}^{t} p_{i}^{\alpha_{i}-1}\left(p_{i}-2\right)
$$

As is the case for Euler's totient function $\phi(n)$, the function $\phi_{2}(n)$ obviously enjoys the multiplicative property $\phi_{2}(m) \phi_{2}(n)$ $=\phi_{2}(m n),(m, n)=1, \phi_{2}(1)=1$. In what follows we call an integer simple if it contains no square factor >1. For a simple number n we have the following analog of Gauss' theorem:

$$
\begin{equation*}
\sum_{\delta \mid n} \phi_{2}(\delta)=\phi(n) \tag{1}
\end{equation*}
$$

[^0]
[^0]: * Journal für Mathematik, vol. 70 (1869), pp. 191-2.
 \dagger Transactions of this Society, vol. 31 (1929), pp. 538-9.

