So, for the same value of h, namely, \bar{h} , there are two values of θ , namely, $\bar{\theta}$ and $\bar{\theta}'$, which is absurd, since θ is single-valued.

(b) If the discontinuity is of the second kind, then there must be a sequence $\{h_n\}$, tending to \bar{h} , for which the corresponding sequence $\{\xi_n\}$ does not tend to any limit. Therefore two values k_1 and k_2 of h can always be found as near as we please to \bar{h} such that the corresponding values η_1 and η_2 of ξ differ from each other by a quantity greater than a suitably prescribed positive quantity δ . But, from (M), f(h)/h and, consequently, $f'(\xi)$ are continuous functions of h at \bar{h} . Therefore ξ must be multiple-valued at \bar{h} , which is absurd, since θ is single-valued.

THE UNIVERSITY OF CALCUTTA

A NUMERICAL FUNCTION APPLIED TO CYCLOTOMY

BY EMMA T. LEHMER

A function $\phi_2(n)$ giving the number of pairs of consecutive integers each less than n and prime to n, was considered first by Schemmel.* In applying this function to the enumeration of magic squares, D. N. Lehmer† has shown that if one replaces consecutive pairs by pairs of integers having a fixed difference λ prime to $n = \prod_{i=1}^{t} p_i^{\alpha_i}$, then the number of such pairs (mod n) whose elements are both prime to n is also given by

$$\phi_2(n) = \prod_{i=1}^t p_i^{\alpha_i-1}(p_i - 2)$$
.

As is the case for Euler's totient function $\phi(n)$, the function $\phi_2(n)$ obviously enjoys the multiplicative property $\phi_2(m)\phi_2(n) = \phi_2(mn)$, (m, n) = 1, $\phi_2(1) = 1$. In what follows we call an integer simple if it contains no square factor > 1. For a simple number n we have the following analog of Gauss' theorem:

(1)
$$\sum_{\delta \mid n} \phi_2(\delta) = \phi(n),$$

^{*} Journal für Mathematik, vol. 70 (1869), pp. 191-2.

[†] Transactions of this Society, vol. 31 (1929), pp. 538-9.