ON THE DIRECT PRODUCT OF A DIVISION AND A TOTAL MATRIC ALGEBRA*

BY F. S. NOWLAN

This paper establishes certain theorems concerning an algebra A which is expressible as the direct product \dagger of a division algebra D and a total matric algebra M. It is moreover not assumed that D and M are subalgebras of A. We let δ and n^{2} represent the orders of D and M respectively. It follows that δn^{2} is the order of A. We represent the modulus of A by $b e$ where b and e are the respective moduli of D and M. In agreement with the usual notation, we write

$$
e=\sum e_{i i},(i=1, \cdots, n)
$$

where $e_{i j},(i, j=1, \cdots, n)$, are the basal units of M.
For the proof of Theorem 1, we express the zero elements of algebras A, D and M by Z, z_{d} and z_{m} respectively. Thereafter we employ the symbol 0 without ambiguity. Since the elements of D and M are commutative with each other and a zero element of an algebra is unique, we have $\ddagger Z=z_{d} z_{m}$.

Theorem 1. If $d m=Z$, where d and m are any elements of D and M, respectively, then either $d=z_{d}$ or $m=z_{m}$.

For, if $d \neq z_{d}$, it possesses an inverse d^{-1}. It follows that

$$
b m=d^{-1} Z=d^{-1} z_{d} z_{m}=z_{d} z_{m}=Z .
$$

Writing

$$
m=\sum_{i, j=1}^{n} \alpha_{i j} e_{i j}
$$

we have

$$
\sum_{i, j=1}^{n} \alpha_{i j} b e_{i j}=Z
$$

[^0]
[^0]: * Presented to the Society, June 18, 1927.
 \dagger Dickson, Algebras and their Arithmetics, p. 72.
 \ddagger In the proof, let $Z=z_{1} z_{2}$, where z_{1} is in D and z_{2} in M. Then

 $$
 Z=Z \cdot z_{d} z_{m}=z_{1} z_{2} \cdot z_{d} z_{m}=z_{1} z_{d} \cdot z_{2} z_{m}=z_{d} z_{m} .
 $$

