MATRICES WHOSE CHARACTERISTIC EQUATIONS ARE CYCLIC*

BY T. A. PIERCE

One of Sylvester's theorems \dagger on matrices states that if the characteristic equation

$$
\begin{equation*}
|M-\lambda I|=f(\lambda)=0 \tag{1}
\end{equation*}
$$

of a square matrix M has the roots $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, then the characteristic equation

$$
\begin{equation*}
|\phi(M)-\rho I|=g(\rho)=0 \tag{2}
\end{equation*}
$$

of any integral function of M, namely, $\phi(M)$, has the roots $\rho_{i}=\phi\left(\lambda_{i}\right), i=1,2, \cdots, n$. In this note an isomorphism is shown to exist between the algebraic and matric roots of (1) when this equation is cyclic. Certain consequences of this isomorphism are given. Since

$$
\left(\begin{array}{cccc}
-a & -b & \cdots & -k \\
\hline & 0 & -l & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 \\
. & \cdots & \cdots & \cdots
\end{array}\right) \cdot
$$

is the matrix which has $\lambda^{n}+a \lambda^{n-1}+b \lambda^{n-2}+\cdots+k \lambda+l=0$ as its characteristic equation, \ddagger Sylvester’s theorem furnishes a method of effecting the Tschirnhaus transformation $\rho=\phi(\lambda)$ on any equation. When (1) is cyclic an especially interesting type of Tschirnhaus transformation is possible.

Suppose (1) to be a cyclic equation of degree n with the relations $\lambda_{i+1}=\phi\left(\lambda_{i}\right), i=1,2, \cdots, n$ and $\lambda_{n+j}=\lambda_{j}$ connecting its roots. For simplicity of notation let ϕ_{i} be the i th iterated function of ϕ so that $\lambda_{2}=\phi\left(\lambda_{1}\right)=\phi_{1}\left(\lambda_{1}\right), \lambda_{3}=\phi\left(\lambda_{2}\right)=\phi\left(\phi\left(\lambda_{1}\right)\right)$ $=\phi_{2}\left(\lambda_{1}\right)$, and in general $\lambda_{i+1}=\phi_{i}\left(\lambda_{1}\right)$. By Sylvester's theorem. the roots of (2) then are

[^0]
[^0]: * Presented to the Society, December 30, 1929.
 \dagger Sylvester, Mathematical Papers, vol. 4, p. 133; Frobenius, Journal für Mathematik, vol. 84, p. 11; Dickson, Algebren und ihre Zahlentheorie, p. 18. \ddagger Wedderburn, Annals of Mathematics, vol. 27 (1926), p. 247.

