ON ANALYTIC SOLUTIONS OF DIFFERENTIAL EQUATIONS IN THE NEIGHBORHOOD OF NON-ANALYTIC SINGULAR POINTS*

BY B. O. KOOPMAN[†]

We shall consider the system

$$\frac{dx_1}{X_1} = \frac{dx_2}{X_2} = \cdots = \frac{dx_n}{X_n}$$

in the complex neighborhood of a point, say $(0, 0, \dots, 0)$, at which the X's vanish simultaneously. We shall suppose throughout that

$$X_{i} = a_{i1}x_{1} + a_{i2}x_{2} + \cdots + a_{in}x_{n} + \phi_{i}(x_{1}, \cdots, x_{n}),$$

$$(i = 1, 2, \cdots, n),$$

and that the general solutions of the related linear system

(2)
$$\frac{dx_1}{a_{11}x_1 + \dots + a_{1n}x_n} = \dots = \frac{dx_n}{a_{n1}x_1 + \dots + a_{nn}x_n}$$

approach zero, without being identically zero.‡ Consider a solution of the equations (2). When will there exist an analytic solution of the equations (1) which behaves essentially like this near $(0, 0, \dots, 0)$? How many such solutions will there be? Our object is to answer these questions without restricting the functions ϕ_i , except as regards their behavior in a certain region of the complex $x_1x_2 \cdots x_n$ -space abutting on the origin, in which the given solution of (2) is embedded. We shall thus obtain a treatment less restricted than those of Briot and Bouquet, Poincaré, Picard, Dulac, Horn, etc., who assume the ϕ 's to be convergent power series of terms of degree higher than the first.§

^{*} Presented to the Society, October 30, 1926.

[†] National Research Fellow in Mathematics.

[‡] See, however, the concluding note of this paper.

[§] For full references, see J. Malmquist, Sur les points singuliers des équations différentielles, Arkiv för Matematik, Astronomi och Fysik, vol. 15, No. 3, (1920), pp. 1-5.