EXTENSIONS OF WARING'S THEOREM ON FOURTH POWERS*

BY L. E. DICKSON

1. Introduction. In 1770 Waring conjectured that every positive integer p is a sum of nineteen integral biquadrates. It is shown in § 8 that eight of them may be taken equal if $p \leqq 4100$. Again, sixteen of them may be taken equal in pairs if $p \leqq 2400$. All possible similar results are included in Theorem 1 of § 3 .
2. Notations and Definitions. The form

$$
\begin{align*}
\left(a_{1}, \cdots, a_{n}\right)=a_{1} x_{1}^{4}+ & \cdots+a_{n} x_{n}^{4} \tag{1}\\
& \left(0<a_{1} \leqq a_{2} \leqq a_{3} \cdots\right)
\end{align*}
$$

is said to be of order n and weight $a_{1}+a_{2}+\cdots+a_{n}$. Since $a x^{4}=x^{4}+\cdots+x^{4}$, to a terms, a form of weight w is equal to a sum of w biquadrates. But 79 is not a sum of fewer than nineteen biquadrates. Hence 19 is the minimum weight of a form (1) which represents all positive integers.

Let f be a form (1) which represents p, and let $a_{1}=r+s$. The form $g=\left(r, s, a_{2}, \cdots, a_{n}\right)$ shall be said to be derived from f by the partition of a_{1} into $r+s$. If we give to the first two variables in g the same value x_{1} as was employed in $f=p$, we see that also g represents p. Hence any form derived from f by partition represents every integer which can be represented by f (and usually represents further integers).

Write $a=2^{4}, b=3^{4}, c=4^{4}, \cdots$ If a positive integer m can be expressed as a linear combination of $1, a, b, \cdots$, with integral coefficients $\geqq 0$ whose sum is $\leqq 19$, in one and only one way, m shall be called a simple number. In case there are exactly two such expressions, m shall be called a double number. Similarly for a triple or k-fold number.

[^0]
[^0]: * Presented to the Society, December 31, 1926.

