SOME THEOREMS CONCERNING MEASURABLE FUNCTIONS*

BY L. M. GRAVES \dagger

Theorems on the measurability of functions of measurable functions, e. g., in the form $F(x)=f[x, g(x)]$, have been given by Carathéodory and other writers. \ddagger Our Theorem I is an easy generalization of the one given by Carathéodory on page 665, with a slightly different method of proof. Here the function $f(x, y)$ is supposed to be defined for all values of y. Our Theorem II merely applies Theorem I to certain cases when the function $f(x, y)$ is not defined for all values of y. In these theorems the variables x and y may be multipartite. Theorems I and II are still valid if, throughout, measurable is replaced by Borel measurable.

In Theorem III, we consider a summable function $f(x, y)$ of two variables, and show by means of Theorem I that the function of x alone

$$
\int_{a}^{x} f(x, y) d y
$$

is also summable, under a suitable convention.
Notations. In Theorems I and II we use the following abbreviated notations: The point (x_{1}, \cdots, x_{k}) in k dimensional space, we denote simply by x. The x-space as a whole is denoted by the German \mathfrak{X}. We do similarly for the m-dimensional space \mathfrak{V}. When we have to speak of the $(k+m)$-dimensional space $(\mathfrak{X}, \mathfrak{Y})$, we may denote

[^0]
[^0]: * Presented to the Society, April 2, 1926.
 \dagger National Research Fellow in Mathematics.
 \ddagger See Caratheodory, Vorlesungen über reelle Funktionen, pp. 376,377,665; Hans Hahn, Theorie der reellen Funktionen, p. 556. Hobson, Theory of Functions of a Real Variable, 2d ed., vol. 1, p. 518.

