AN INVARIANT OF A GENERAL TRANSFORMATION OF SURFACES*

BY W. C. GRAUSTEIN

1. Introduction. If two surfaces, S and S^{\prime}, are in one-toone point correspondence, the transformation T of S into S^{\prime} establishes between the pencils of tangent lines at corresponding points of S and S^{\prime} a projective correspondence. Furthermore, if the line of intersection, L, of the tangent planes to S and S^{\prime} at the corresponding points M and M^{\prime} passes through neither of these points, that is, if neither S nor S^{\prime} is a focal surface of the congruence of lines $M M^{\prime}$, the pencils of tangent lines at M and M^{\prime} cut L in projective ranges of points.

The invariant cross ratio of the projectivity on L is an invariant of the transformation T with respect to the group of collineations of the three-dimensional space in which S and S^{\prime} are imbedded. We propose to study this invariant, and to apply it, in particular, to the so-called fundamental transformations of surfaces.
2. General Case. We shall restrict ourselves primarily to the general case in which the projective correspondence on L has two distinct fixed points, D_{1} and D_{2}. Let the surfaces S and S^{\prime} be represented parametrically so that corresponding points have the same curvilinear coordinates (u, v). In particular, take as the u-curves the corresponding families of curves on S and S^{\prime} whose tangents at corresponding points, M and M^{\prime}, intersect in D_{1} and, as the v-curves, the curves whose tangents at corresponding points intersect in D_{2}.
A. Fixed Points Finite. If D_{1} and D_{2} are both finite points expressions for their coordinates, $y^{(1)}:\left(y_{1}^{(1)}, y_{2}^{(1)}, y_{3}^{(1)}\right)$ and $y^{(2)}:\left(y_{1}^{(2)}, y_{2}^{(2)}, y_{3}^{(2)}\right)$ are readily found. Since, for example,

[^0]
[^0]: * Presented to the Society, December 30, 1924.

