NOTE ON A THEOREM OF KEMPNER CONCERNING TRANSCENDENTAL NUMBERS*

BY HENRY BLUMBERG

The theorem in question is the following one: \dagger
Let a be an integer greater than $1, p / q$ a rational fraction, $p<0, q>0 ; \alpha_{n}(n=0,1,2, \cdot \cdot \cdot)$, any positive or negative integer smaller in absolute value than a fixed arbitrary number M, but only a finite number of the α_{n} equal to 0 ; then

$$
\sum_{n=0}^{\infty} \frac{\alpha_{n}}{a^{2^{n}}}\left(\frac{p}{q}\right)^{n}
$$

is a transcendental number.
Professor Kempner states: "The condition that only a finite number of coefficients shall be zero ... I have not been able to remove."

Now although the proof of the theorem appears essentially to depend not merely on the croissance of the denominators $a^{2^{n}}$ but also on the particular character of the exponent 2^{n} of a, so that considerations based on the representation of numbers in the binary scale may be used, it nevertheless seems plausible that the restriction that only a finite number of coefficients shall be zero is dispensable. And, indeed, it is the purpose of this note to prove the theorem without this restriction; in other words, to prove the following theorem.

Theorem. The properly \ddagger infinite series

$$
f(x)=\sum_{n=0}^{\infty} \frac{\alpha_{n}}{a^{2^{n}}} x^{n},
$$

where a is an integer greater than 1, and α_{n} an integer less in absolute value than a fixed number M, is transcendental for rational $x(\neq 0)$.

[^0]
[^0]: * Presented to the Society, April 22, 1916.
 \dagger Transactions of this Society, vol. 17 (1916), p. 477.
 \ddagger That is, the terms are not all zero after a certain point.

