APPROXIMATE SOLUTIONS OF A SYSTEM OF DIF-FERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS BY LEAST SQUARES*

BY N. KRYLOFF

1. Systems of First Order. In many problems of mathematical physics and particularly in electrical circuit theory, it is of importance to find approximate solutions of a system of differential equations of the form

(1)
$$\frac{dx_i}{dt} = f_i(t, x_1, x_2, \cdots, x_p)$$
, $(i=1, 2, \cdots, p)$.

Sometimes it may be shown by physical considerations that a system of type (1) which corresponds to some definite experimental fact, really possesses a periodic solution with a period equal to T. By a suitable change of variables, we may suppose that

(2)
$$x_i = 0$$
, $(i = 1, \dots, p)$ for $t = 0$, $t = T$;

and it then remains only to find the numerical solution of (1) and (2) with a given degree of approximation. We shall suppose first that the system (1) is linear with variable coefficients, that is to say, that

(3)
$$\frac{dx_i}{dt} - A_{i1}x_1 - A_{i2}x_2 - \cdots - A_{ip}x_p = F_i, \quad (i = 1, 2, \cdots, p),$$

where $A_{i1}, A_{i2}, \dots, A_{ip}, F_i$ are functions of t. As in the method of least squares, we shall try to render stationary the integral

(4)
$$\int_{0}^{T} \sum_{i=1}^{p} \left[\frac{dx_{i}}{dt} - \sum_{k=1}^{p} A_{ik}x_{k} - F_{i} \right]^{2} dt$$
$$= \int_{0}^{T} \sum_{i=1}^{p} \left[L_{i}(x_{i}) - F_{i} \right]^{2} dt$$

* Presented to the Society, December 29, 1925.

J ...