THE ALTERNATION OF NODES OF LINEARLY INDEPENDENT SOLUTIONS OF SECOND ORDER DIFFERENCE EQUATIONS*

BY OTTO DUNKEL

We shall consider solutions of the difference equation

(1)
$$u(n+2) = A(n) u(n+1) - B(n) u(n), \quad B(n) > 0,$$

where A(n) and B(n) are finite and single-valued functions of the integer *n*. If the points obtained by plotting a solution u(n) are joined by segments of a straight line, this broken line gives a representation of a single-valued and continuous function f(x) such that f(n) = u(n). The zeros of f(x) are called the nodes of u(n).

Proofs have already been given of the following theorem.

THEOREM. The nodes of two linearly independent solutions of (1) separate one another.[†]

The proof which is to be given here seems simpler and more obvious than either of these two proofs. Two known and easily verified facts will be used. If $u_1(n)$ and $u_2(n)$ are any two solutions of (1) and if we set

$$\Delta(n) = \begin{vmatrix} u_1(n) & u_2(n) \\ u_1(n+1) & u_2(n+1) \end{vmatrix},$$
$$\Delta(n+1) = B(n)\Delta(n) .$$

then

As a first result of the condition imposed upon
$$B(n)$$
 in (1) we have the fact that if $\Delta(n)$ is not zero for one value of n then it is never zero and its sign remains unchanged.

A necessary and sufficient condition that the two solutions $u_1(n)$ and $u_2(n)$ are linearly independent is that $\Delta(n)$ is not zero for one value of n.

^{*} Presented to the Society, December 29, 1925.

[†] Porter, ANNALS OF MATHEMATICS, (2), vol. 3, (1901–02), p. 65. Moulton, E. J., ibid. ,(2), vol. 13 (1911–12), p. 137.