ON THE SOLUTION OF HIGHER DEGREE ALGEBRAIC EQUATIONS*

BY GLENN JAMES

1. Introduction. In this paper, we first solve for a real root of the general algebraic equation with real coefficients and negative constant term. This root appears as the limit of a function defined by a certain recursion formula. Ordinary radicals are special forms of it. By means of this result and the notation of repeated resolvent equations, we then outline a theoretically possible method of obtaining formulas for all the roots of any equation.
2. The Least Positive Real Root. Consider the equation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0, \tag{1}
\end{equation*}
$$

where the coefficients are real and $a_{n}<0$. At least one root of this equation lies between 0 and k where

$$
k>\left|a_{1}\right|+\sqrt{\left|a_{2}\right|}+\sqrt[3]{\left|a_{3}\right|}+\cdots+\sqrt[n]{\left|a_{n}\right|}
$$

and no root as large as $k . \dagger$ In order to simplify our work and our results, we subtract k from the roots of (1) then make use of the interval $-k$ to 0 . The new equation is

$$
\begin{equation*}
(x+k)^{n}+a_{1}(x+k)^{n-1}+\cdots+a_{n}=0 . \tag{2}
\end{equation*}
$$

We now denote the left member of this equation by $f(x)$ and make use of the interpolation formula
(3) $\frac{x_{p}}{x_{p-1}}=\frac{f(0)}{f(0)-f\left(x_{p-1}\right)}, \quad p=2,3, \cdots, \quad x_{1}=-k$.

[^0]
[^0]: * Presented to the Society, San Francisco Section, April 4, 1925.
 \dagger J. L. Walsh, (Annals of Mathematics, (2), vol. 25, No. 3, p. 285) proves that in the complex plane the roots all lie within or on a circle about the origin having this expression for a radius. This can be proved for real values by direct substitution.

