ON IRREDUNDANT SETS OF POSTULATES*

BY H. M. GEHMAN

In his paper On irredundant sets of postulates,[†] Mr. Alonzo Church gives a mechanical method[‡] by which any set of postulates can be made irredundant. This method in the general case is as follows. Given a set of postulates A_1, A_2, \dots, A_n . Form the set of postulates B_1, B_2, \dots, B_n , where $B_1=A_1$ and for each $i(i=2, 3, \dots, n)$, B_i denotes the proposition if A_1, A_2, \dots, A_{i-1} , then A_i .

Obviously the negatives of any two postulates of the set [B] are contradictory. Hence to show that the set [B] is irredundant, we need merely show the postulates independent by showing for each $i(i=1, 2, \dots, n)$, an example in which B_i is false. This requires the existence of examples exhibiting these characteristics in terms of the set $[A]: A_1, A_2, \dots, A_{i-1}$ true, A_i false, for each i.

Even if the postulates of set [A] are not independent, the postulates of set [B] are independent (and irredundant), except when a relation exists of this form:

(I) If
$$A_{n_1}, A_{n_2}, \dots, A_{n_{k-1}}$$
, then A_{n_k} ,
for $1 \le n_1 < n_2 < \dots < n_{k-1} < n_k \le n$,

in which case the postulates of set [B] are not independent.

We have here a new method of obtaining independence among postulates. Given any set of n postulates [A] which can be arranged in a sequence such that no relation of form (I) exists. The set [A] can be replaced, without losing any implications, by

^{*} Presented to the Society, October 31, 1925.

[†] TRANSACTIONS OF THIS SOCIETY, vol. 27 (1925), p. 318. A set of postulates is *irredundant* if the postulates are independent and the negatives of every two are contradictory.

[‡] Loc. cit., p. 321. Church confines his remarks to the case where the postulates are independent.