# ON THE CORRESPONDENCE BETWEEN SPACE SEXTIC CURVES AND PLANE QUARTICS IN FOUR-SPACE* 

BY B. C. WONG
This paper proposes to show by means of an involutorial quartic transformation in space of four dimensions a certain correspondence between certain space sextics and plane quartics. The transformation is effected by four quadric varieties. $\dagger$ To a point is made to correspond the intersection of its polar spaces with respect to the quadric varieties. If a point describes a line, a plane, or a 3 -space, the corresponding point describes a quartic curve, a two-dimensional surface of order 6 , or a three-dimensional variety of order 4 , respectively. The locus of points which transform into lines is the surface $J_{2}^{10}$ (of dimension 2 and degree 10) and the locus of these lines is $J_{3}^{15}$ (of dimension 3 and degree 15). The $J_{3}^{15}$ is the Jacobian of the $\left|M_{3}^{4}\right|$, images of the $S_{3}$ of $S_{4}$. The former is the fourfold two-dimensional surface on the latter and the latter is generated by the quadri-secants of the former.

Consider a fixed plane $\sigma_{2}$. It has 10 points $P$ in common with $J_{2}^{10}$. The surface $\Sigma_{2}^{6}$ into which $\sigma_{2}$ transforms is intersected by a 3 -space $S_{3}$ in a sextic curve $\Gamma_{1}^{6}$. The quartic variety $S_{3}^{4}$ corresponding to $S_{3}$ is met by $\sigma_{2}$ in a quartic $\gamma_{1}^{4}$ through $P$. The transform of $\gamma_{1}^{4}$ is a degenerate curve of the 16 th degree in 4 -space made up of 10 lines corresponding to the 10 points $P$ and the sextic $\Gamma_{1}^{6}$ which is in $S_{3}$. This sextic $\Gamma_{1}^{6}$ is said to correspond to the plane quartic $\gamma_{1}^{4}$.

The 10 points $P$ in $\sigma_{2}$ determine $\infty^{4}$ quartics; correspondingly, $\Sigma_{2}^{6}$ determines with the $\infty^{4} 3$-spaces in 4 -space $\infty^{4}$ sex-

[^0]
[^0]:    * Presented to the Society, San Francisco Section, April 3, 1926.
    $\dagger$ N. Alderton, Involutory quartic transformation in space of four dimensions, University of California Publications in Mathematics, vol. 1, No. 15, pp. 345-358.

