A HISTORICAL NOTE ON GIBBS' PHENOMENON IN FOURIER'S SERIES AND INTEGRALS

BY H. S. CARSLAW

In 1899, Gibbs called attention^{*} to the fact that for large values of n the approximation curves

$$y = S_n(x) = 2\sum_{1}^{n} (-1)^{r-1} \frac{\sin rx}{r},$$

for the Fourier's series which represents f(x) = x in the interval $-\pi < x < \pi$, fall from the point $(-\pi, 0)$ at a steep gradient to a point very nearly at a depth $2\int_0^{\pi} [(\sin \alpha)/\alpha] d\alpha$ below the axis of x, then oscillate above and below y = x close to this line until x approaches π , when they rise to a point very nearly at a height $2\int_0^{\pi} [(\sin \alpha)/\alpha] d\alpha$ above the axis, and then fall rapidly to $(\pi, 0)$.

At the point of discontinuity, where $x = \pi$, in the series $2\sum_{1}^{\infty}(-1)^{r-1}(\sin rx)/r$ the approximation curves thus tend to coincide, not with the segment joining the points (π, π) and $(\pi, -\pi)$, but with the straight line whose ends are the points

$$\left(\pi,\pi+\frac{D}{\pi}\int_{\pi}^{\infty}\frac{\sin\alpha}{\alpha}d\alpha\right)$$

and

$$\left(\pi, -\pi - \frac{D}{\pi} \int_{\pi}^{\infty} \frac{\sin \alpha}{\alpha} d\alpha\right),$$

where $D = f(\pi + 0) - f(\pi - 0)$, the amount of the "jump" in the sum of the series at that point.

In 1906, Bôcher showed[†] that the same phenomenon occurred in general in the Fourier's Series for the arbitrary

^{*} NATURE, vol. 59 (1899), p. 606.

[†] Annals of Mathematics, (2), vol. 7, (1906).