ON SETS OF THREE CONSECUTIVE INTEGERS WHICH ARE QUADRATIC RESIDUES OF PRIMES*

BY A. A. BENNETT
In this paper we shall prove the following theorems.
Theorem I. For each prime, p, for which there are as many as three incongruent squares, there is a set of three consecutive residues (admitting zero and negative numbers as residues) which are squares, modulo p.

Theorem II. For $p=11$, and for each prime p greater than 17, (and for no other primes), there is a set of three consecutive least positive (non-zero) residues which are squares, modulo p.

The problem \dagger of finding three consecutive integers which are quadratic residues of a prime, p, is equivalent to the formally more general problem of finding two quantities, $x, y,(y \neq 0)$, such that $x, y, x+y, x-y$, are proportional to squares in the domain, \ddagger since we then have $(x / y)-1, x / y,(x / y)+1$ as consecutive squares in the domain. We may show that for residues with respect to a modulus the condition is equivalent to the existence of a square of the form $\begin{aligned} & u v(u+v)(u-v) \text {. By taking }\end{aligned}$ $u=x, v=y$, we see that the condition is necessary.

[^0]
[^0]: * Presented to the Society, April 10, 1925.
 \dagger For references, compare article of similar title by H.S. Vandiver, this Bulletin, vol. 31 (1925), p. 33.
 \ddagger That, in the system of natural numbers, it is impossible to have distinct quantities, x, y, such that $x, y, x+y, x-y$ are all proportional to squares was proved by Fermat by his celebrated method of "infinite descent". See Carmichael, Theory of Numbers, p. 86.
 \S It is of interest to note that in the case of natural numbers we may take $u=x$ and $v=y$ for this relation. Indeed, if $x, y, x+y$, $x-y$ were proportional to squares, certainly their product would be a square. Conversely, suppose that their product were a square. Then either $x, y, x+y, x-y$ would all be relatively prime, or if

