ON THE NUMBER OF REPRESENTATIONS OF AN INTEGER AS A SUM OR DIFFERENCE OF TWO CUBES*

BY E. T. BELL

1. Introduction and Summary. Let $C(n)$ denote the number of integer solutions $(x, y)=(\xi, \eta), \xi>0, \eta>0$, of $x^{3}+y^{3}=n$, the pair (ξ, η), (η, ξ) being considered as a single solution, and $D(n)$ the number of integer solutions $(x, y), x>0, y>0$ of $x^{3}-y^{3}=n, n>0$. If the pair $(\xi, \eta),(\eta, \xi)$ in $C(n)$ be counted as two solutions, the total number is evidently $2 C(n)$ or $2 C(n)-1$ according as n is not or is the double of an integer cube >0. No determination of $C(n), D(n)$ seems to have been made. It will be of interest therefore to record forms of these functions depending only upon the real divisors of n, in analogy to the classical results for $x^{2} \pm y^{2}=n$. These forms also indicate fairly expeditious means for finding all the resolutions of n into a sum or difference of two cubes.

We denote by $\psi(z)$ the well known function whose value is 1 or 0 according as z is or is not an integer square $\geqq 0$. In the sequel only integer arguments z occur. For $S(n) \equiv C(n)$ or $D(n)$ we find the following:
(1) $\quad n \equiv 0 \bmod 3, \quad n \equiv \equiv 0 \bmod 9, \quad S(n)=0$ 。

$$
\begin{equation*}
n \equiv 0 \bmod 9, \quad S(n)=\sum \psi\left(4 t-3 d^{2}\right) \tag{2}
\end{equation*}
$$

the \sum extending to all pairs (t, d) of conjugate divisors of $n / 9$ such that

$$
\frac{1}{3} \sqrt[3]{n}<d \leqq \frac{1}{3} \sqrt[3]{4 n}, \text { or } d<\frac{1}{3} \sqrt[3]{n}
$$

according as $S=C$ or D.

$$
\begin{equation*}
n \equiv \pm 1 \bmod 3, \quad S(n)=\sum \psi\left(\frac{4 t-3 d^{2}}{3}\right) \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, San Francisco Section, June 19, 1925.

