we see that any term which does not correspond to an absolute permutation of the n indices i, j, \cdots, k contains an element from the main diagonal and is therefore zero. The value of a term corresponding to an absolute permutation is +1 or -1 according as the permutation is even or odd. The value of D is therefore the difference between the number of even absolute permutations, N_{e}, and the number of odd absolute permutations, N_{o}, that is

$$
\begin{equation*}
N_{e}-N_{o}=(-1)^{n-1}(n-1) \tag{1}
\end{equation*}
$$

Moreover we have*

$$
\begin{equation*}
N_{e}+N_{o}=n!\sum_{r=2}^{n} \frac{(-1)^{r}}{r!} \tag{2}
\end{equation*}
$$

From (1) and (2) N_{e} and N_{o} can be calculated.
Princeton University

THE ABSOLUTE VALUE OF THE PRODUCT OF TWO MATRICES \dagger

BY J. H. M. WEDDERBURN

1. Introduction. If $a=\left(a_{p q}\right)$ is a matrix of order n whose elements are ordinary complex numbers, the absolute value of a is defined as $\sqrt{\sum a_{p q} \bar{a}_{p q}}$, where $\bar{a}=\left(\bar{a}_{p q}\right)$ is the matrix whose coefficients are the conjugates of the corresponding coefficients in a; we shall denote it here by $\lfloor\alpha\rceil$, a special symbol being convenient since the absolute value of a scalar matrix λ is not $|\lambda| \equiv \bmod \lambda$ but $n^{1 / 2}|\lambda|$. This definition has been freely used by writers on differential equations; but, in spite of this, its properties with regard to multiplication have seemingly escaped notice, or are at least not well known.
[^0]
[^0]: * Cf. Seelhoff, Archiv der Mathematik und Physik, (2), vol. 1, p. 100.
 \dagger Presented to the Society, May 2, 1925.

