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THE GEOMETRY OF FREQUENCY FUNCTIONS* 
BY DUNHAM JACKSON 

1. Introduction. The Pearson coefficient of correlation, 
calculated for a finite number of observations, has a geo­
metric interpretation which is simple and almost immediate.t 
The same thing may be said of the corresponding expression 
formed for a pair of functions of a continuous variable. £ 
When the distribution of the observed quantities is thought 
of as given by a frequency function, the geometric inter­
pretation of the correlation coefficient is not so obvious. 
It is the purpose of this paper to show one form that such 
an interpretation may take.§ The geometric configurations 
are exactly the same as in the other cases mentioned; the 
difference is in the manner of setting up the association. 
This is accomplished by defining an appropriate correspon­
dence between an arbitrary point of a plane, or of space, 
and an arbitrary linear combination of the variables sub­
jected to measurement. 

There will be no assumption that the distributions in­
volved are "normal", in the sense of the Gaussian law. 
There will be incidental reference to frequency functions 
having properties that correspond to those of normal ortho­
gonal sets of functions, as the terms are used in the theory 
of the development of arbitrary functions in series; but 

* Presented to the Society, October 25, 1924. 
f Cf., e. g., D. Jackson, The trigonometry of correlation, AMEEICAN 

MATHEMATICAL MONTHLY, vol. 31 (1924), pp. 275-280; also the paper 

cited in the next footnote. 
t Cf., e.g., D.Jackson, The elementary geometry of functio?i space; 

recently submitted to the AMEEICAN MATHEMATICAL MONTHLY. 

§ For another form, cf. James McMahon, Hyperspherical goniometry ; 
and its application to correlation theory for n variables, BIOMETEIKA, 
vol. 15 (1923), pp. 173-208. The fundamental idea of attaching a geo­
metric meaning to the correlation coefficient appears to be due to 
Pearson himself. 


