A THEOREM ON SIMPLE ALGEBRAS* by J. H. M. WEDDERBURN

In a previous paper \dagger I showed that every simple algebra A can be expressed as the direct product of a division algebra D and a simple matric algebra $M = (e_{pq})$; the object of this note is to show that this expression is unique, that is, if $A = D_1 \times M_1 = D_2 \times M_2$, where D_1 and D_2 are division algebras and M_1 and M_2 are simple matric algebras, then D_1 and M_1 are simply isomorphic[‡] with D_2 and M_2 respectively.

Let δ_1 and δ_2 be the orders of D_1 and D_2 , and let e_1 and e_2 be primitive idempotent elements of M_1 and M_2 respectively. If e_1 and e_2 are supplementary or equal, then

$$D_1 \cong e_1 A e_1 \cong e_2 A e_2 \cong D_2;$$

 M_1 and M_2 are then of the same order and are therefore simply isomorphic. We shall therefore suppose that $e_1 \neq e_2$ and, say, $e_1e_2 \neq 0$.

Assume in the first place that $x = e_1 e_2$ is not nilpotent; there then exists a rational polynomial

$$y = \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_r x^r,$$

which is an idempotent element of the algebra X generated by x. Now $e_1x = x$; therefore, since every element of X has the form xf(x), f(x) a polynomial in x, it follows that $e_1y = y$ and

$$(ye_1)^2 = ye_1ye_1 = y^2e_1 = ye_1 = e_1ye_1,$$

so that $ye_1 \leq e_1Ae_1$; also $ye_1 \neq 0$ since $ye_1y = y^2 = y \neq 0$; hence ye_1 , being idempotent, equals e_1 . In the same way

^{*} Presented to the Society, May 3, 1924.

[†] PROCEEDINGS OF THE LONDON SOCIETY, (2), vol. 6 (1907), p. 99.

 $[\]ddagger$ Simple isomorphism will be denoted by \cong .

[§] See L. E. Dickson, Algebras and Their Arithmetics, Chicago, 1923, pp. 74, 77.