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NUCLEAR AND HYPER-NUCLEAR POINTS 
IN THE THEORY OF ABSTRACT SETS* 

BY E. W. CHITTENDEN 

1. Introduction. In his note, Le théorème de Borel dans 
la theorie des ensembles abstraits,^ Fréchet considers the 
problem: determine the most general class (L) for which 
the theorem of Borel holds true. This class is found to 
be a class (S), that is, a class (L) in which the derived 
set of every set is closed. At the end of the note he calls 
attention to the fact that the stronger theorem of Borel-
Lebesgue may not hold in a given class (S) and proposes 
the question: what is the most general class (L) for which 
we may state the theorem of Borel-Lebesgue? That such 
a class (L) be a class (S) is necessary but not sufficient. 

This attracted the attention of R. L.Moore,% who showed 
by the aid of the theory of transfinite ordinals that the 
most general class (L) which admits the theorem of Borel-
Lebesgue is a class (S) with the further property "every 
compact set is perfectly compact". The property perfectly 
compact, so named by Fréchet, § is defined as follows. 
A set E is perfectly compact if every monotone sequence 
of subsets of E determines an element which is common 
to all the sets of the sequence or to their derived sets. 
A sequence of sets is monotone if of any two sets of the 
sequence one contains the other. 

Later Fréchet, || developing the theory of classes (V) 
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