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NUCLEAR AND HYPER-NUCLEAR POINTS
IN THE THEORY OF ABSTRACT SETS*

BY E. W. CHITTENDEN

1. Introduction. In his note, Le théoréme de Borel dans
la theovie des ensembles abstraits,t Fréchet considers the
problem: determine the most general class (L) for which
the theorem of Borel holds true. This class is found to
be a class (S), that is, a class (L) in which the derived
set of every set is closed. At the end of the note he calls
attention to the fact that the stronger theorem of Borel-
Lebesgue may not hold in a given class (S) and proposes
the question: what is the most general class (L) for which
we may state the theorem of Borel-Lebesgue? That such
a class (I.) be a class (S) is necessary but not sufficient.

This attracted the attention of R. L. Moore,{ who showed
by the aid of the theory of transfinite ordinals that the
most general class (1) which admits the theorem of Borel-
Lebesgue is a class (S) with the further property “every
compact set is perfectly compact”’. The property perfectly
compact, so named by Fréchet,§ is defined as follows.
A set E is perfectly compact if every monotone sequence
of subsets of E determines an element which is common
to all the sets of the sequence or to their derived sets.
A sequence of sets is monotone if of any two sets of the
sequence one contains the other.

Later Fréchet,| developing the theory of classes (V)
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