Let us see what the effect will be when the value of z as obtained from $\varrho=0$ is substituted in equations (1). Suppose that the substitution has been made in X and Z. It is easy to see that X_{z} and Z_{z} are equal to zero, and that to differentiate X completely with respect to x, it is necessary to differentiate with respect to x and then to use the function of a function rule, thus $X_{x}+X_{z}(\partial z / \partial x)$, and similarly for the other letters. Thus using the fact that $\varrho=0$, we may write the equations (5) in the form

$$
\left\{\begin{align*}
\left(X_{p}+\frac{\partial z}{\partial p} X_{z}\right)\left(Z_{x}+p Z_{z}\right)-\left(Z_{p}+\frac{\partial z}{\partial p} Z_{z}\right)\left(X_{x}+p X_{z}\right) & =0 \tag{16}\\
\left(P_{p}+\frac{\partial z}{\partial p} P_{z}\right)\left(X_{x}+p X_{z}\right)-\left(X_{p}+\frac{\partial z}{\partial p} X_{z}\right)\left(P_{x}+p P_{z}\right) & =0 \\
\left(P_{p}+\frac{\partial z}{\partial p} P_{z}\right)\left(Z_{x}+p Z_{z}\right)-\left(Z_{p}+\frac{\partial z}{\partial p} Z_{z}\right)\left(P_{x}+p P_{z}\right) & =0
\end{align*}\right.
$$

It is very easy to see that these equations are now the expanded form of the determinants of the matrix (15). Hence the theorem is proved.

The University of Missouri

INTEGRO-DIFFERENTIAL INVARIANTS OF ONE-PARAMETER GROUPS OF FREDHOLM TRANSFORMATIONS*

BY A. D. MICHAL

1. Statement of the Problem. The authort has already considered functionals of the form $f\left[y\left(\boldsymbol{\tau}_{0}^{\prime}\right), y^{\prime}\left(\boldsymbol{\tau}_{0}^{\prime}\right)\right]$ (depending only on a function $y(\tau)$ and its derivative $y^{\prime}(\tau)$ between 0 and 1) which are invariant under an arbitrary Volterra one-parameter group of continuous transformations. The
[^0]
[^0]: * Presented to the Society, December 1, 1923.
 \dagger Cf. Integro-differential expressions invariant under Volterra's group of transformations in a forthcoming issue of the AnNals of Mathematics. This paper will be referred to as "I.D.I.V."

