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Let us see what the effect will be when the value of z 
as obtained from Q = 0 is substituted in equations (1). 
Suppose that the substitution has been made in X and Z. 
It is easy to see that Xz and Zz are equal to zero, and 
that to differentiate X completely with respect to x, it is 
necessary to differentiate with respect to x and then to 
use the function of a function rule, thus Xx-\-Xz(dz/dx), 
and similarly for the other letters. Thus using the fact that 
Q = 0, we may write the equations (5) in the form 

(16) 

| (xP+^Xz)(Zx+pZz)-(zp+^Z2)(Xx+pXz) = 0, 

Pp+^PPZ) ( X - + ^ - K+^ x ) ( P*+^p* )=°> 

{Pp+^PPZ) M°+PZJ- K + I H ( p * + p p à = ° -
It is very easy to see that these equations are now the 

expanded form of the determinants of the matrix (15). 
Hence the theorem is proved. 
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1. Statement of the Problem. The authort has already 
considered functionals of the form f[y(rf

0), y'(Tf
0)] (depending 

only on a function y(x) and its derivative y'{r) between 
0 and 1) which are invariant under an arbitrary Volterra 
one-parameter group of continuous transformations. The 
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