THE JACOBIAN
 OF A CONTACT TRANSFORMATION*

BY E. F. ALLEN
The equations
(1) $\quad x_{1}=X(x, z, p), \quad z_{1}=Z(x, z, p), \quad p_{1}=P(x, z, p)$,
where X, Z, and P are functions of class $\mathrm{C}^{\prime \prime}$, represent a transformation of line-elements in the $x z$ plane to lineelements in the $x_{1} z_{1}$ plane. With Lie we shall define every transformation in x, z, p, which leaves the Pfaff differential equation

$$
\begin{equation*}
d z-p d x=0 \tag{2}
\end{equation*}
$$

invariant, as a contact transformation of the $x z$ plane to the $x_{1} z_{1}$ plane. Hence the equations (1) must satisfy an identity of the form

$$
\begin{equation*}
d z_{1}-p_{1} d x_{1}=\varrho(d z-p d x) \tag{3}
\end{equation*}
$$

where ϱ is a function of x, z, and p alone.
The following relations connecting X, Z, P, and their partial derivatives are easily obtained: \dagger

$$
\begin{gather*}
\left\{\begin{array}{l}
Z_{x}-P X_{x}=-p \varrho \\
Z_{z}-P X_{z}=\varrho \\
Z_{p}-P X_{p}=0
\end{array}\right. \tag{4}\\
\left\{\begin{array}{l}
{[X Z]=X_{p}\left(Z_{x}+p Z_{z}\right)-Z_{p}\left(X_{x}+p X_{z}\right)=0} \\
{[P X]=\varrho, \text { and }[P Z]=\varrho P}
\end{array}\right. \tag{5}
\end{gather*}
$$

The jacobian of transformation (1) is

$$
J=\left|\begin{array}{lll}
X_{x} & X_{z} & X_{p} \tag{6}\\
Z_{x} & Z_{z} & Z_{p} \\
P_{x} & P_{z} & P_{p}
\end{array}\right|
$$

[^0]
[^0]: * Presented to the Society, December 1, 1923.
 \dagger Lie und Scheffers, Geometrie der Berührungstransformationen, p. 68, Chap. 3.

