QUADRATIC FIELDS
 IN WHICH FACTORIZATION IS ALWAYS
 UNIQUE*

BY L. E. DICKSON

1. Definitions. Let m be an integer, other than 0 and 1 , such that m is not divisible by a perfect square exceeding unity. All numbers $r+s \sqrt{m}$ in which r and s are rational constitute a field $R(\sqrt{m})$. Its algebraic integers are known to be $x+y \theta$, where x and y are rational integers, and
(1) $\quad \theta=\sqrt{m} \quad$ if $m \equiv 2$ or $m \equiv 3 \quad(\bmod 4)$,
(2) $\theta=\frac{1}{2}(1+\sqrt{m}), \theta^{2}=\theta-k, \quad$ if $m \equiv 1 \quad(\bmod 4)$, where $k=\frac{1}{4}(1-m)$. The conjugate of $\xi=x+y \theta$ is defined to be $\xi^{\prime}=x+y \theta^{\prime}$, where $\theta^{\prime}=-\theta$ in case (1), and $\theta^{\prime}=\frac{1}{2}(1-\sqrt{m})$ in case (2). The product $\xi \xi^{\prime}$ is called the norm of ξ, and is denoted by $N(\xi)$. According as the case is (1) or (2), we have

$$
\begin{equation*}
N(x+y \theta)=x^{2}-m y^{2} \quad \text { or } \quad x^{2}+x y+k y^{2} \tag{3}
\end{equation*}
$$

If ξ is an algebraic integer such that $N(\xi)= \pm 1$, then ξ is called a unit. The only units in $R(i)$ are ± 1 and $\pm i$.
2. Object of the Paper. It is knownt that $-1,-2,-3$, -7 and -11 are the only negative values of m for which the greatest common divisor process yielding numerically decreasing norms is always applicable in $R(\sqrt{m})$, so that if a and b are any algebraic integers $(b \neq 0)$ there exist algebraic integers q and r of the field such that

$$
a=b q+r, \quad \mid \text { norm } r|<| \text { norm } b \mid
$$

[^0]
[^0]: * Presented to the Society, December 29, 1923. See also This Bulletin, p. 90, Jan.-Feb., 1924, and footnote, p. 247, May-June, 1924.
 \dagger For a geometric proof, see Birkhoff, American Mathematical Monthly, vol. 13 (1906), pp. 156-159.

