from (16), on eliminating h or k, that $h=\mu h_{1}, k=\lambda k_{1}$, where h_{1} and k_{1} are integral, and we get

$$
\begin{equation*}
h_{1} a_{1}+k_{1} b_{1} \equiv 0\left(\bmod \varepsilon_{1}\right), h_{1} c_{1}+k_{1} d_{1} \equiv 0\left(\bmod \varepsilon_{1}\right) \tag{17}
\end{equation*}
$$

The nature of the singularities on the sides of the triangle $A B C$ is readily determined. For instance, suppose in (6) $c>a>0$. Then (6) gives an expansion for t in ascending powers of $x^{1 / a}$, and thence we get for y an expansion of the form

$$
y=x^{c / a}\left(\alpha+\beta x^{1 / a}+\gamma x^{2 / a}+\cdots\right)
$$

in general, fixing the nature of the singularity for which t is zero.

Bedford College, University of London

SURFACES WITH ORTHOGONAL LOCI OF THE CENTERS OF GEODESIC CURVATURE OF AN ORTHOGONAL SYSTEM*

BY MALCOLM FOSTER
We consider a surface S referred to any orthogonal system. Let G_{1} and G_{2} be the centers of geodesic curvature of the curves $u=$ const. and $v=$ const. respectively, through any point M of S. As M is displaced over the entire surface the loci of G_{1} and G_{2} will in general be two surfaces S_{1} and S_{2}, corresponding elements of which are those which result from a common displacement of M. We ask: What are the surfaces S for which the surfaces S_{1} and S_{2} correspond with orthogonality of linear elements?

The condition that the displacements of G_{1} and G_{2} be orthogonal for every displacement of M, is that the absolute displacements of these points in the directions of the axes of the moving trihedral at M satisfy the relation

$$
\begin{equation*}
\sum \delta x_{1} \delta x_{2}=0 \tag{1}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, April 28, 1923.

