from (16), on eliminating h or k, that $h = \mu h_1$, $k = \lambda k_1$, where h_1 and k_1 are integral, and we get

(17)
$$h_1a_1 + k_1b_1 \equiv 0 \pmod{\varepsilon_1}, h_1c_1 + k_1d_1 \equiv 0 \pmod{\varepsilon_1}.$$

The nature of the singularities on the sides of the triangle ABC is readily determined. For instance, suppose in (6) c > a > 0. Then (6) gives an expansion for t in ascending powers of $x^{1/a}$, and thence we get for y an expansion of the form

 $y = x^{c/a} \left(\alpha + \beta x^{1/a} + \gamma x^{2/a} + \cdots \right)$

in general, fixing the nature of the singularity for which t is zero.

BEDFORD COLLEGE, UNIVERSITY OF LONDON

SURFACES WITH ORTHOGONAL LOCI OF THE CENTERS OF GEODESIC CURVATURE OF AN ORTHOGONAL SYSTEM*

BY MALCOLM FOSTER

We consider a surface S referred to any orthogonal system. Let G_1 and G_2 be the centers of geodesic curvature of the curves u = const. and v = const. respectively, through any point M of S. As M is displaced over the entire surface the loci of G_1 and G_2 will in general be two surfaces S_1 and S_2 , corresponding elements of which are those which result from a common displacement of M. We ask: What are the surfaces S for which the surfaces S_1 and S_2 correspond with orthogonality of linear elements?

The condition that the displacements of G_1 and G_2 be orthogonal for every displacement of M, is that the absolute displacements of these points in the directions of the axes of the moving trihedral at M satisfy the relation

(1)
$$\sum \delta x_1 \ \delta x_2 = 0,$$

322

^{*} Presented to the Society, April 28, 1923.