NUMBER OF CYCLES OF THE SAME ORDER IN ANY GIVEN SUBSTITUTION GROUP*

BY G. A. MILLER

1. Introduction. If G is a transitive substitution group and if the subgroup composed of all the substitutions of G which omit a given letter is of degree $n-\alpha$, then there are exactly α substitutions involving no letters except possibly those of G which are commutative with every substitution of G. These α substitutions include the identity. If $\alpha>1$ the remaining $\alpha-1$ substitutions may or may not appear in G. From this well known theorem, it follows directly that G involves exactly $\alpha-1$ sets of conjugate cycles which are such that no two distinct cycles of the set have a common letter. Each of these cycles appears in g / n different substitutions of G, where g denotes the order of G. A necessary and sufficient condition that a transitive substitution group be regular is that no two of its sets of conjugate cycles have a common letter.

When no two conjugate cycles of G have a letter in common it is evident that every pair of cycles in a set of conjugates must be commutative, but these cycles may also be commutative when G is non-regular. When G involves at least one set of conjugate cycles which has the property that every pair of cycles in the set is composed of commutative cycles, G must be imprimitive unless all these cycles involve the same letters and are also of prime order. In this special case, G is evidently always primitive. From the fact that a cycle of prime degree p is transformed into each of its various powers which are incongruent to $1(\bmod p)$ only by substitutions of degree $p-1$ on the letters of this cycle it results directly that such substitutions involve cycles

[^0]
[^0]: * Presented to the Society, December 29, 1923.

