CONCERNING A SUGGESTED AND DISCARDED GENERALIZATION OF THE WEIERSTRASS FACTORIZATION THEOREM*

BY L. L. DINES

1. Introduction. A basic theorem in the theory of analytic implicit functions, proven by Weierstrass, may for our purpose be stated as follows:

Let (1°) , $f(y; x_1, \ldots, x_n)$ be analytic at the origin and vanish there; and (2°) , $f(y; 0, \ldots, 0)$ be not identically zero. Then, throughout a certain neighborhood of the origin, there holds an identity of the form[†]

(1) $\begin{array}{c} f(y; \, x_1, \, \dots, \, x_n) \\ = (P_0 y^m + P_1 y^{m-1} + \dots + P_m) \, g(y; \, x_1, \, \dots, \, x_n) \end{array}$

where $g(y; x_1, ..., x_n)$ is analytic and does not vanish at the origin; and where $P_j, j = 0, 1, ..., m$, is an analytic function of $x_1, x_2, ..., x_n$ and for j > 0 vanishes when $x_1 = x_2 = \cdots = x_n = 0$.

In his *Madison Colloquium Lectures*, Osgood called attention to the fact that the hypothesis (2°) may be omitted in the case of a function f(y; x) of only two variables, without disturbing the validity of the conclusion; and suggested tentatively but without proof that the theorem in this stronger form might be true for a function $f(y; x_1 \ldots, x_n)$ of n+1 variables. In a later paper‡ he showed very definitely that the theorem is *not* true in general, with the omission of the hypothesis (2°) . His proof of this fact consisted in the exhibition of a function of the form

(2)
$$f(y; x_1, x_2) \equiv x_1 - x_2 F(y)$$

which is not factorable in the form (1).

^{*} Presented to the Society, September 7, 1923.

[†] The theorem of Weierstrass states, in addition, that $P_0 = 1$, and that *m* is equal to the degree of the term of lowest degree in the series $f(y; 0, \ldots, 0)$.

[‡]TRANSACTIONS OF THIS SOCIETY, vol. 17, page 4.