ON THE APPLICATION OF THE THEORY OF IDEALS TO DIOPHANTINE ANALYSIS* BY G. E. WAHLIN

1. Introduction. About three years ago⁺ Professor Dickson stated a certain conjectured theorem, and he has recently published a proof of it.⁺

After having examined a proof of the same theorem by the author of this article, Professor Dickson suggested the investigation of a more general equation than the one which he had considered, and the following pages contain the results of this investigation.

2. *Rings.* Let us consider any algebraic number field $k(\theta)$ of degree *n*. Let $\gamma_1, \gamma_2, \ldots, \gamma_n$ be a fundamental system of integers of $k(\theta)$ so that every integer of the field can be represented by the fundamental form

(1) $x_1\gamma_1 + x_2\gamma_2 + \cdots + x_n\gamma_n,$

in which the x_1, x_2, \ldots, x_n are rational integers.

By a ring R in $k(\theta)$ we understand a set of integers which is closed with respect to addition, subtraction, and multiplication, and which contains the rational integers. Let q_1, q_2, \ldots, q_n be a fundamental system of R. As above, we shall call

(2) $x_1\varrho_1 + x_2\varrho_2 + \cdots + x_n\varrho_n$

the fundamental form of R. Every element of R is represented once and only once by (2) when the x_1, x_2, \dots, x_n are given rational integral values.

Since $\varrho_1, \varrho_2, \ldots, \varrho_n$ are integers in $k(\theta)$, they can be represented by (1), and we shall suppose that

(3) $\boldsymbol{\varrho}_i = r_{i1} \gamma_1 + r_{i2} \gamma_2 + \cdots + r_{in} \gamma_n, \quad (i = 1, 2, \ldots, n).$

^{*} Presented to the Society, December 29, 1923.

[†] L. E. Dickson, A new method in Diophantine analysis, this BULLETIN, vol. 27, No. 8 (May, 1921), p. 353.

[‡] L. E. Dickson, Integral solutions of $x^2 - my^2 = zw$, this BULLETIN, vol. 29, No. 10 (Dec., 1923), p. 464.