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iVand R. The initial form (12) becomes one or two new quad­
ratic forms in N and R. We proceed similarly with a prime 
factor of a/p, etc. Finally, we obtain formulas for x from 
ax = £ — by. We conclude that all integral solutions of (8) 
are products of the same arbitrary integer by the numbers 
obtained from a finite number of sets of four expressions each 
quadratic in four arbitrary parameters. The explicit formulas 
will be discussed on another occasion. 

THE UNIVERSITY OF CHICAGO 

ON THE REALITY OF THE ZEROS OF A 
X-DETERMINANT * 

BY R. G. D. RICHARDSON 

Some of the best-known theorems of algebra are centered 
around the zeros of the polynomial in X, 
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In the classical case of the determinant connected with the 
equations of secular variations, where the elements a# are real 
and the determinant |a#| formed from (1) by omitting the 
X's is symmetric (a# = ay»), these zeros turn out to be real. 
This theorem concerning the reality of the zeros has been 
extended f to the case where a# and a# are conjugate complex 
(ay = âji). It is proposed in this note to extend it to a still 
more general case which has arisen in some investigations con­
cerning pairs of bilinear forms just completed by the author. 
This generalization consists in allowing the coefficients of the 
X's to be n2 in number instead of n as in (1), of allowing them 
to be various and complex instead of all unity, and of bor­
dering the determinant by m rows and m columns. The 

* Presented to the Society October 27, 1923. 
t Cf. Kowalewski, Einführung in die Determinantentheorie, p. 130. 


