1921.] LATTICE SPACE AND ELLIPTIC FUNCTIONS.

(cf. this BULLETIN, volume 25 (1919), page 449) the following theorem is fundamental: if we designate by a Minkowski surface in R_n a finite surface in space of *n* dimensions, having as its chief characteristic a center of symmetry toward which it is nowhere convex (cf. l. c. for specific definition), then a Minkowski surface in R_n and of volume $\geq 2^n$ will contain at least three distinct lattice points (i. e., points whose coordinates are integers) if its center is a lattice point. In order to extend the usefulness of the geometry of numbers, Professor Blichfeldt has amplified this theorem to read as follows: (1) a Minkowski surface in R_n of volume $\geq 2^n k$ and whose center is a lattice point, must contain more than k-1 distinct pairs of lattice points in addition; (2) a Minkowski surface in R_n which contains k lattice points, its center being one, must have a volume > (k - n)/n!, if these k points do not all lie on a linear R_{n-1} . Some applications of this theorem were presented.

> B. A. BERNSTEIN, Secretary of the Section.

AN IMAGE IN FOUR-DIMENSIONAL LATTICE SPACE OF THE THEORY OF THE ELLIPTIC THETA FUNCTIONS.

BY PROFESSOR E. T. BELL.

(Read before the San Francisco Section of the American Mathematical Society June 18, 1920.)

1. In his memoir on "Rotations in space of four dimensions"* Professor Cole defined a system of four mutually orthogonal lineoids yzw, xzw, xyw, xyz (which we shall denote by X, Y, Z, W respectively) through a point O, the four lines and six planes determined by these, and with reference to this system found the transformations into itself of a sphere S with center at O. Henceforth we assume the radius of S to be \sqrt{n} , where n is an integer > 0. From this system we shall derive an image of the theory of the elliptic theta func-

153

^{*} Amer. Jour. of Math., vol. 12 (1890), p. 191.