PONCELET POLYGONS IN HIGHER SPACE.

PROFESSOR ALBERT A. BENNETT.

(Read before the American Mathematical Society December 30, 1919.)
Let there be given a linear projective space of $2 n$ dimensions. A point of the space may be denoted by P and its dual figure by P^{\prime}. Thus a P^{\prime} is a linear space of $2 n-1$ dimensions.
The totality of P 's in the space is infinity to the order $2 n$, and the totality of P "'s is of course of this same order. We shall select from these totalities a Q_{n} and a $Q_{n}{ }^{\prime}$ respectively, general quadratic loci of infinity to the order n of elements, where Q_{n} consists of P 's, and $Q_{n}{ }^{\prime}$ of $P^{\prime \prime}$ s.
For Q_{n} and $Q_{n}{ }^{\prime}$ not in specialized relation to each other we have a two-two correspondence of the following form: Each P of Q_{n} meets two $P^{\prime \prime}$ s of $Q_{n}{ }^{\prime}$, and each P^{\prime} of $Q_{n}{ }^{\prime}$ meets two P 's of Q_{n}. Starting with any point of Q_{n}, a succession of points of Q_{n} is determined, where furthermore consecutive points of the sequence may be joined by lines. The succession of lines forms then a single "broken line" as this term is used in projective geometry. It may or may not happen that the broken line closes into a polygon. Except for degenerate cases corresponding to coincident P^{\prime} 's or $P^{\prime \prime}$ s, and it being supposed that Q_{n} and $Q_{n}{ }^{\prime}$ are not degenerate, it may be proved that the closure of the broken line is determined by the relative positions of Q_{n} and $Q_{n}{ }^{\prime}$ and is independent of the element selected as initial.

This may be called a theorem of Poncelet polygons in higher spaces. For $n=1$, the theorem is the usual one.
It should be emphasized that the case for $n>1$ is not the logical equivalent of the case for $n=1$, since there are n independent parameters in any case. The proof of the theorem is immediate by reference to general theorems on algebraic correspondences or to theta functions, the quadratics Q_{n} and $Q_{n}{ }^{\prime}$ determining theta functions of genus n, and affording one of the simplest illustrations of their character.
A second generalization and one which applies to threespace is to spaces of $2 n-1$ dimensions generally, $n>1$, the $P, P^{\prime}, Q_{n}, Q_{n}{ }^{\prime}$ being as above. Any P^{\prime} of $Q_{n}{ }^{\prime}$ may be viewed

