ON A GENERALIZATION OF A THEOREM OF DINI ON SEQUENCES OF CONTINUOUS FUNCTIONS.

BY DR. T. H. HILDEBRANDT.

(Read before the American Mathematical Society at Chicago, April 10, 1914.)

WE propose in this note to give a generalization of the following theorem of Dini*: "If a monotonic sequence of functions continuous on a closed interval converges to a continuous function, the convergence is uniform."

The double sequence analogue of this theorem proves to be of importance in our generalization. We embody it in the following

If a double sequence a_{mn} is monotonic non-decreasing LEMMA. in m for every n, and if $L_m L_n a_{mn} = L_n L_m a_{mn}$, all the limits being supposed to exist, then $L_m a_{mn}$ and $L_n a_{mn}$ converge uniformly and the double limit $L_{mn}a_{mn}$ exists and is equal to the iterated limits.

The proof of the uniformity of convergence of $L_m a_{mn}$ is part of Theorem I of the paper by the author in the Annals of Mathematics, series 2, volume 14, page 81. This uniformity has as a direct consequence the existence of the double limit equal to the iterated limits, which in turn implies the uniformity of $L_n a_{mn}$.

For the purposes of generalization, consider a class \mathfrak{O} of elements unconditioned excepting for the existence within the class of some definition of limit, i. e., some means of determining whether a sequence of elements has a limit and what this limit is.[†] Then it is possible to define the concepts *limiting element*, closed and compact relative to subclasses \Re of \mathfrak{O} . \ddagger Also if μ is a real-valued function on \Re , we can define the notion of continuity, as well as equal continuity, as applied to a set of functions. In such a situation we are able to state the following

THEOREM. If \Re is a closed and compact subclass of \mathfrak{O} , and μ_{nr} is a monotonic sequence of functions continuous on \Re and

^{*} Cf. Dini-Lüroth-Schepp: Theorie der Funktionen, p. 148. † Cf. Amer. Journ. of Mathematics, vol. 34, p. 241. ‡ Cf. Fréchet: "Sur quelques points du calcul fonctionnel," Rendi-conti del Circolo Matematico di Palermo, vol. 22 (1906), pp. 6, 7, 11.